

Cased Pipe Risk Assessment and Inspection Technologies

Presenter:

D. D'Zurko, NYSEARCH/NGA (973) 265-1900 x214

ddzurko@northeastgas.org

Co-Authors:

Oliver Moghissi, DNV Kent Muhlbauer, WKM Consulting Gregory Penza, ULC Robotics

Background

- Differences between Cased Pipe & Line Pipe
 - Corrosion is a different time-dependent threat inside a casing
 - Time independent threats might be lower inside a casing
 - ECDA difficult to apply inside a casing
- Risk is a basis to compare cased and uncased pipe allowing resource optimization

Vision for Cased Pipe Integrity Assurance Model

- Operators are collecting data on cased pipe
- Need to separate casings into categories on basis of threat or risk
- Cased Pipe Integrity Assurance model designed to be
 - Thorough and defensible to regulators
 - Flexible to allow for available data
 - Conservative and able to accommodate input by SMEs
 - Robust

PHMSA 'Serious' Incident Data

- Avoidance of threats (gas transmission)
 - -Third party damage (34.4% of all incidents)
 - -Other external forces plus natural forces (4.6%)
 - -Material failure (10.6%)
 - some of these would be avoided since activation requires external force
- Cased pipe might be ~40% lower PoF than uncased

Specific Threats by Category

Category	Example
Time Dependent	External Corrosion, Internal Corrosion, SCC, Erosion, Fatigue
Static or Resident	Manufacturing, Welding/Fabrication, and Equipment Defects
Time Independent or Random	Mechanical Damage, Incorrect Operations, Weather and Outside Forces

Cased Pipe Integrity Assurance Model

Objective

 Develop an overall risk assessment algorithm to support risk and integrity management of encased pipe

Benefits

- Allow threats within casings to be evaluated differently than threats outside of casings; helps to balance opportunity to reduce risk and prioritize threats
- Provide a means for assessing cased pipe that would otherwise not be possible or would be cost prohibitive
- Provide a formal, technically defensible consensus-based process for assessing risk on cased pipe

Applicability of Model

1. Low Risk

• Risk insignificant

2. Susceptible

- Work to put casing in 'Low Risk' category
 - Collect additional data to determine if categorization is from uncertainty (i.e., conservative assessment was assumed)
 - Perform action to stop atmospheric or external corrosion
 - Mitigate or eliminate corrosive environment
 - e.g., remove short, dry annulus and repair end seals, use dielectric wax

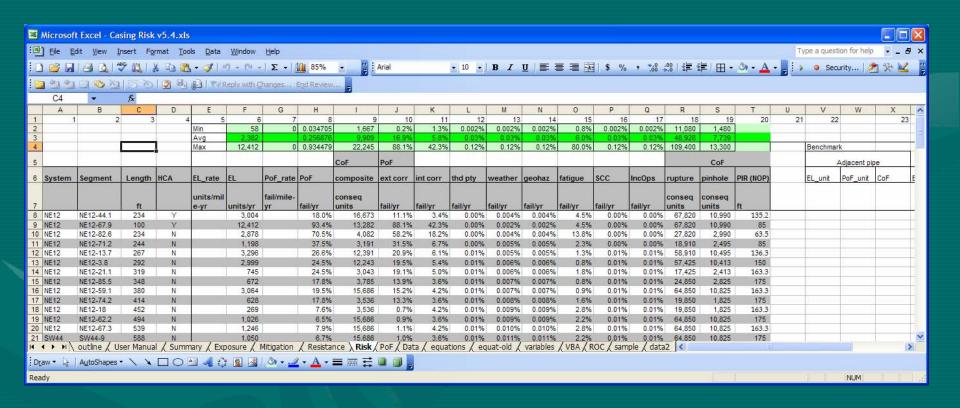
3. At risk

- Examine or inspect pipe
- Possible repair
- Possible P & M measures
- Mitigate or eliminate corrosive environment

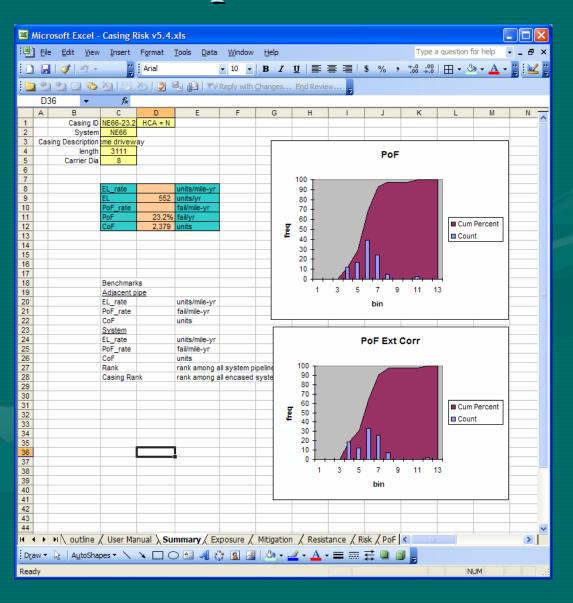
Corrosion Mechanisms in Casings

- Oxygen corrosion in liquid water
- Oxygen corrosion in condensed water

MIC in liquid water


Estimate Risk Using Prob of Failure & Consequence of Failure

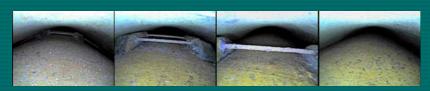
- Utilize three concepts for PoF
 - 1. Exposure (corrosivity) = likelihood of an active pipe failure reaching the pipe when no mitigation applied
 - 2. Mitigation (\overline{CP} and $\overline{Coatings}$) = reduces likelihood or intensity of the exposure reaching the pipe; keeps mechanism off the pipe
 - 3. Resistance (Pipe Wall Thickness and/or SMYS) = ability to resist failure given presence of exposure/threat
- Probability of Damage (PoD) determined by #1 and #2
- Probability of Failure (PoF) determined by PoD and #3
- $Risk = PoF \times CoF$


The Cased Pipe Integrity Assurance Process

The Result: Calculate Risk from PoF and CoF for Each Casing

Explore Relative Risk of Single Casing Compared to Others

Status of Cased Pipe Integrity Assurance Model


- WKM/Muhlbauer and CCT/DNV completed model in 2009
- Spreadsheet deliverable and user manual provided to funders
- User-friendly graphical version of model available through licensed commercializer; New Century Software
 - (rich.arata@newcenturysoftware.com)
- NYSEARCH funders working on independent validation (by WKM) of model based on casing job data

Annular Space Direct Inspection Robot

- Purpose: To develop a platform for inspection of the carrier pipe in the annular space
- Ph I: development, testing & implementation of visual inspection camera
- Video Inspection can provide data
 - Integrity of Coating
 - Physical placement & condn of insulators
 - Presence of Electrical contacts
 - Environmental Conditions
 - Risk Assessment

Casing Camera passing over casing spacer

Annular Space Direct Inspection Robot

- Phase II Objectives
 - Enhance System Reliability and Availability
 - Develop functionality to assess carrier pipe integrity

• Phase II system enhancements include:

- Spot pipe wall thickness measurement sensor
- Humidity sensor for direct readings of humidity level inside the casing
- Inclinometer for on screen display of radial positioning
- Video measuring tool for precision measurement of features and defects

Development Status of Annular Space Space Direct Inspection Robot

- Field test inspections continue with first generation robot
- Additional prototypes available to accommodate more jobs and spares
- Ultrasonic metal loss sensor, moisture sensor and inclinometer developed and tested in lab; field testing pending
- Commercial service offering is likely to be available in 2010;
 currently assessing market interest

Overall Data Collection Efforts related to Projects & Casings

- ILI data, casing inspection data, casing history and construction information being collected where possible
- Direct information from Annular Space
 Inspection Robot can also provide condition of coating, location/position of spacers, presence of moisture and location of anomalies
- Direct information from robot can be used to complement other information

Overall Data Collection Efforts related to Projects & Casings (cont.)

- Through scientific methods established by CCT/DNV, we are quantifying the boundaries of corrosion rates in annular space (Corrosion Rate Estimation Project)
 - Benchscale testing
 - Full laboratory testing
 - NYSEARCH/NGA test bed controlled tests
 - Member field tests
- All this information can further substantiate calculations made through cased pipe integrity assurance model

Summary

- The external corrosion threat on pipelines differs when the pipe is within a casing
- The principles of corrosion and risk are the same both inside and outside of the casing
- Methods are being developed that apply existing tools to cased pipelines
- Inspection tools are being developed that can navigate in the annular space