
# Well Integrity Casing and Cement Inspection

Layth Jumaah - North America Well Integrity Advisor

May 2023

Copyright 2023 Baker Hughes Company. All rights reserved. The information contained in this document is company confidential and proprietary property of Baker Hughes and its affiliates. It is to be used only for the benefit of Baker Hughes and may not be distributed, transmitted, reproduced, altered, or used for any purpose without the express written consent of Baker Hughes.

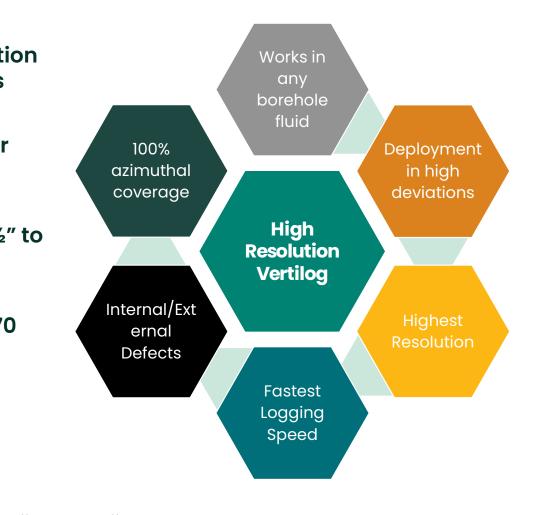
## Baker Hughes Well Integrity Portfolio



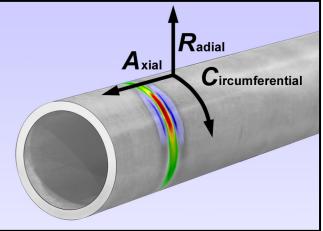


# High-Resolution Vertilog - HRVRT




## High-Resolution Vertilog

HRVRT is leading casing inspection tool compared to other tools

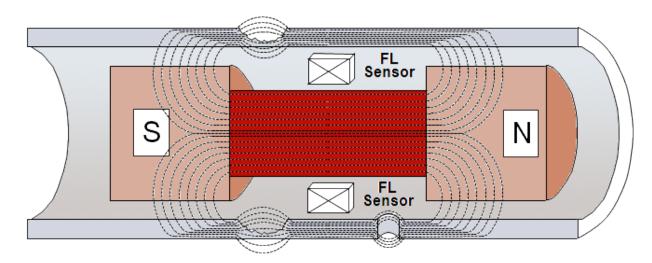

2500+ Operational jobs per year worldwide

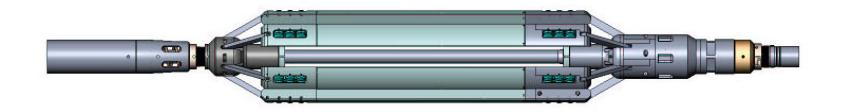
Service covering range from 3 ½" to 9 5/8"

Global approval by more than 70 NOC/IOC





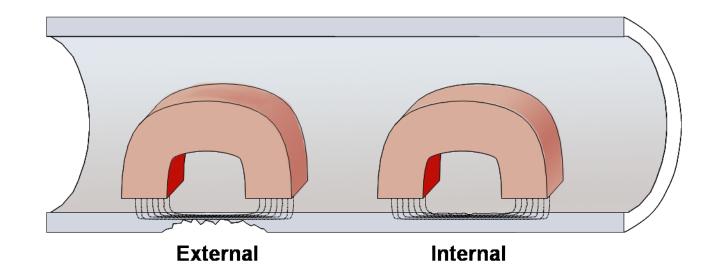



Ô

## Measurement Theory – FL

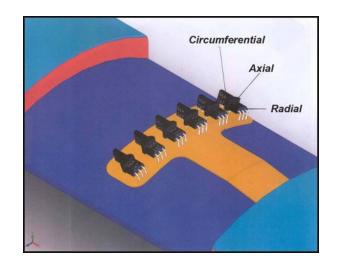
• A permanent magnet circuit is completed through the tubular, producing a very high magnetic flux density within the tubular body wall.







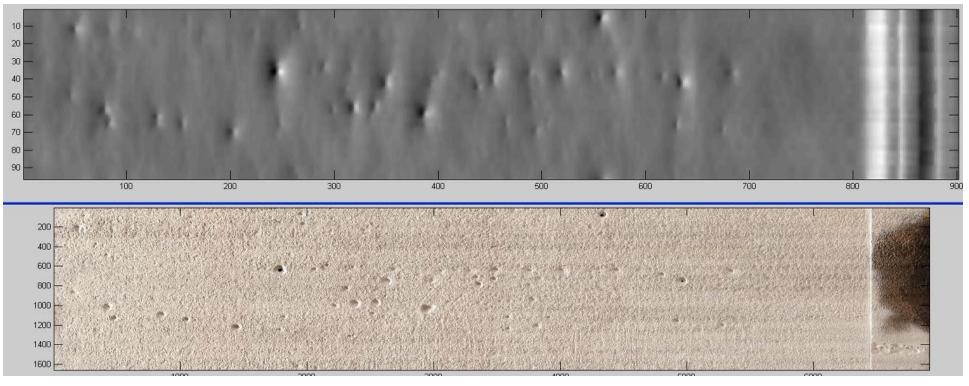

### Measurement Theory - DIS


• FL sensors alone cannot differentiate internal from external defects. To perform this function, Discriminator (DIS) sensors are deployed within a weak magnetic field that is completed through the tubing's inner surface.





## How do we get such high resolution


- Increased circumferential and axial resolution
  - Highest number of sensors
    - + 144 FL , 48 DIS in 4  $\ensuremath{\rlap{/}_{\!\!\!\!2}}\xspace$  tool
    - + 144 FL , 48 DIS in 5" 5 ½" tool
    - + 288 FL , 96 DIS in 7" 9  $5\!\!/\!\!\!/s''$  tool
  - Smaller sensors (1 ¼" coil to .25" Hall Sensors)
- Multi-axial Sensors
  - Results in better defect description
- Quantifiable defect description
  - Increased accuracy for length, width and depth of penetration determination
  - Results in better input into burst pressure calculations
  - Data base output for long term data storage and integration into other data systems





## HR Vertilog

#### Casing Image from HRVRT



Casing Photograph





# HRVRT Characterization Improvements

Copyright 2023 Baker Hughes Company. All rights reserved. The information contained in this document is company confidential and proprietary property of Baker Hughes and its affiliates. It is to be used only for the benefit of Baker Hughes and may not be distributed, transmitted, reproduced, altered, or used for any purpose without the express written consent of Baker Hughes.

## Outline

- Filled the gaps in existing database for missing pipes
- Larger spectrum of defects sizes  $(L \times W \times D)$  used for each pipe (82 defects)
- Characterized the effect of external casings



## Process of Characterization

- Identify and acquire casing sizes and grades missing in old database
- Machine 82 defects per casing compared to 32 defects in old characterization models.
- Vertically string casings of each size and log together 25 to 30 times
  - Casing by itself (in a 30" well)
  - Casing with one or two external barriers, e.g., 5.5" inside 7 5/8" inside 9 5/8"
- Use modelling to fill the remaining gaps for grades and casing conditions that were not logged
- Train the algorithm using all runs in each configuration



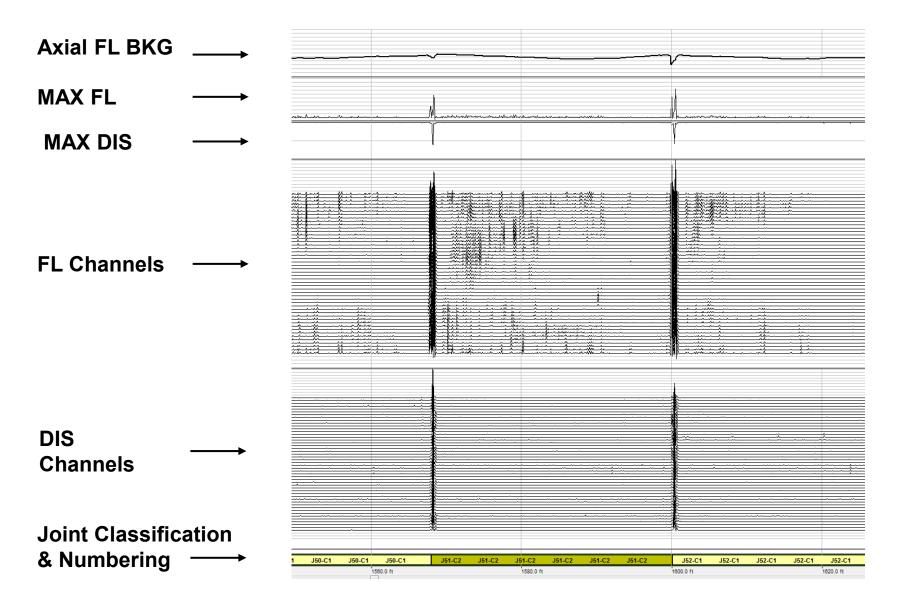
## Database Upgrade with New Pipes

| Tool | Casing Size, in. | Weight, ppf | Grade           |
|------|------------------|-------------|-----------------|
| 4993 | 3.5              | 9.2         | 13Cr95, 13Cr110 |
|      |                  | 9.5         | K55             |
|      | 4 1/2            | 11.6        | H40, J55        |
|      | 41/2             | 13.5        | J55             |
|      |                  | 15.1        | P110            |
| 4994 | 5                | 15          | P110            |
|      | 5                | 18          | P110            |
|      |                  | 14          | K55             |
|      | 5 1/2            | 15.5        | J55             |
|      |                  | 17          | J55             |
|      | 5                | 15          | P110            |
|      |                  | 18          | P110            |
|      |                  | 14          | K55             |
| 4995 |                  | 15.5        | J55             |
|      | 5 1/2            | 17          | J55             |
|      |                  | 23          | P110            |
|      |                  | 29.7        | L80             |
|      |                  | 17          | K55             |
|      | 7                | 23          | J55, L80        |
|      | /                | 32          | P110            |
|      |                  | 41          | P110            |
|      |                  | 24          | K55             |
|      | 8 5/8            | 32          | K55             |
|      | 0 5/8            | 40          | L80             |
|      |                  | 44          | L80             |
| 4997 |                  | 36          | K55             |
| 4997 |                  | 43.5        | L80             |
|      | 9 5/8            | 53.5        | P110            |
|      |                  | 60          | L80             |
|      |                  | 26.7        | L80             |
|      |                  | 33.7        | L80             |
|      | 7 5/8            | 42.8        | P110            |
|      |                  | 55.3        | P110            |
|      |                  | 24          | L80             |
|      | 6 5/8            | 28          | L80             |



## Conclusion

- Gaps were filled in the pipe database
- Database was expanded to include more defect sizes
- External casing effect was included in the database
  - $\Rightarrow$  More accurate and stable algorithm today






# HRVRT Advanced Analysis Advanced Reporting

I4 Copyright 2023 Baker Hughes Company. All rights reserved. The information contained in this document is company confidential and proprietary property of Baker Hughes and its affiliates. It is to be used only for the benefit of Baker Hughes and may not be distributed, transmitted, reproduced, altered, or used for any purpose without the express written consent of Baker Hughes.

## Log Format (Advanced Analysis)





## Reporting – Feature List Example

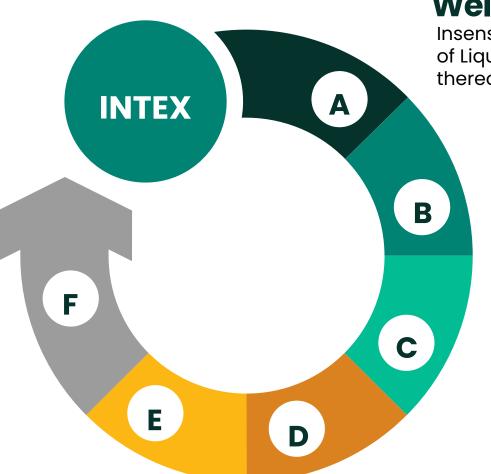
| Dil | oint Length | ldentifier               | Class                                      | Description | Surface Indication   | Length     | Width      | Depth    | Dim Class    | P Safe Barlow | ERF Barlow     | P Safe B31G  | ERF B31G       | P Safe Mod B31G | ERF Mod B31G | P Safe Effective Area | ERF Effective Area | NWT   | Comment |
|-----|-------------|--------------------------|--------------------------------------------|-------------|----------------------|------------|------------|----------|--------------|---------------|----------------|--------------|----------------|-----------------|--------------|-----------------------|--------------------|-------|---------|
|     | ft          |                          |                                            |             |                      | in         | in         | %        |              | psi           |                | psi          |                | psi             |              | psi                   |                    | in    |         |
|     | 30.10       | C-62                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
|     | 31.05       | C-63                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
|     | 31.05       | MLCB-63-1                | Metal Loss Call Box                        |             | Internal             | 0.6        | 0.9        | 20       | PITT         | 3416          | 0.381          | 4645         | 0.280          | 4987            | 0.261        |                       |                    | 0.272 |         |
| -   | 33.27       | C-64                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
|     | 26.79       | C-65                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
|     | 32.65       | C-66                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
|     | 30.71       | C-67                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
|     | 30.71       | MLCB-67-1                | Metal Loss Call Box                        |             | Internal             | 0.8        | 0.6        | 23       | PITT         | 3275          | 0.397          | 4614         | 0.282          | 4950            | 0.263        |                       |                    | 0.272 |         |
|     | 32.72       | C-68                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
|     | 31.83       | C-69                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
|     | 26.99       | C-70                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
| -   | 31.39       | C-71                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
| -   | 33.77       | C-72                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
| -   | 30.52       | C-73                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
| -   | 33.15       | C-74                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
| -   | 33.22       | C-75                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
| _   | 32.75       | C-76                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
| -   | 31.99       | C-77                     | Collar                                     |             |                      |            |            |          |              |               |                |              |                |                 |              |                       |                    | 0.272 |         |
| -   | 31.99       | MLCB-77-1                | Metal Loss Call Box                        |             | Internal             | 1.0        | 2.9        | 29       | CIGR         | 3035          | 0.428          | 4534         | 0.287          | 4850            | 0.268        |                       |                    | 0.272 |         |
| _   | 31.99       | MLC-77-1                 | Metal Loss Cluster                         |             | Internal             | 3.4        | 4.5        | 37       | GENE         | 2693          | 0.483          | 3940         | 0.330          | 4046            | 0.321        | 4374                  | 0.297              | 0.272 |         |
| -   | 31.99       | MLCB-77-2                | Metal Loss Call Box                        |             | Internal             | 1.3        | 1.1        | 37       | PITT         | 2693          | 0.483          | 4365         | 0.298          | 4631            | 0.281        | -314                  | 01237              | 0.272 |         |
| -   | 31.99       | MLCB-77-3                | Metal Loss Call Box                        |             | Internal             | 1.3        | 1.7        | 31       | GENE         | 2949          | 0.441          | 4442         | 0.293          | 4732            | 0.275        |                       |                    | 0.272 |         |
| _   | 31.99       | MLC-77-2                 | Metal Loss Cluster                         |             | Internal             | 3.6        | 2.8        | 31       | GENE         | 2949          | 0.441          | 4058         | 0.320          | 47.52           | 0.309        | 4585                  | 0.284              | 0.272 |         |
| -   | 31.99       | MLCB-77-4                | Metal Loss Call Box                        |             | Internal             | 0.8        | 1.1        | 21       | PITT         | 3377          | 0.385          | 4617         | 0.282          | 4255            | 0.262        | 4505                  | 01204              | 0.272 |         |
| -   | 31.99       | MLCB-77-5                | Metal Loss Call Box                        |             | Internal             | 1.4        | 1.5        | 26       | GENE         | 3163          | 0.411          | 4457         | 0.292          | 4753            | 0.274        |                       |                    | 0.272 |         |
| -   | 31.99       | MLCB-77-6                | Metal Loss Call Box                        |             | Internal             | 1.0        | 1.0        | 21       | PITT         | 3377          | 0.385          | 4586         | 0.283          | 4916            | 0.264        |                       |                    | 0.272 |         |
| _   | 31.99       | MLC-77-3                 | Metal Loss Cluster                         |             | Internal             | 3.0        | 1.9        | 22       | GENE         | 3331          | 0.390          | 4300         | 0.302          | 4536            | 0.287        | 4689                  | 0.277              | 0.272 |         |
| _   | 31.99       | MLCB-77-7                | Metal Loss Call Box                        |             | Internal             | 0.9        | 0.9        | 22       | PITT         | 3331          | 0.390          | 4591         | 0.283          | 4922            | 0.264        | 4005                  | 01277              | 0.272 |         |
| -   | 31.99       | MLCB-77-8                | Metal Loss Call Box                        |             | Internal             | 1.1        | 0.7        | 20       | PITT         | 3419          | 0.380          | 4574         | 0.284          | 4900            | 0.265        |                       |                    | 0.272 |         |
| -   | 31.99       | MLCB-77-9                | Metal Loss Call Box                        |             | Internal             | 0.8        | 0.7        | 23       | PITT         | 3304          | 0.394          | 4617         | 0.282          | 4953            | 0.262        |                       |                    | 0.272 |         |
| -   |             | MLCB-77-10               | Metal Loss Call Box                        |             | Internal             | 1.2        | 1.7        | 22       | PITT         | 3334          | 0.390          | 4539         | 0.286          | 4353            | 0.268        |                       |                    | 0.272 |         |
| -   |             | MLCB-77-10               | Metal Loss Call Box                        |             | Internal             | 0.8        | 0.7        | 24       | PITT         | 3239          | 0.401          | 4602         | 0.282          | 4935            | 0.263        |                       |                    | 0.272 |         |
| -   |             | MLCB-77-11<br>MLCB-77-12 | Metal Loss Call Box                        |             | Internal             | 1.6        | 1.0        | 24       | PITT         | 3235          | 0.402          | 4435         | 0.293          | 4723            | 0.205        |                       |                    | 0.272 |         |
| -   |             | MLCB-77-12<br>MLCB-77-13 | Metal Loss Call Box                        |             | Internal             | 1.0        | 1.4        | 24       | PITT         | 3077          | 0.402          | 4433         | 0.233          | 4723            | 0.275        |                       |                    | 0.272 |         |
| -   |             | MLCB-77-13<br>MLCB-77-14 | Metal Loss Call Box                        |             | Internal             | 0.9        | 0.9        | 31       | PITT         | 2949          | 0.422          | 4527         | 0.287          | 4869            | 0.268        |                       |                    | 0.272 |         |
| -   |             | MLCB-77-14<br>MLCB-77-15 | Metal Loss Call Box                        |             | Internal             | 1.2        | 0.9        | 22       | PITT         | 3334          | 0.441          | 4530         | 0.286          | 4857            | 0.267        |                       |                    | 0.272 |         |
| -   |             | MLCB-77-15<br>MLCB-77-16 | Metal Loss Call Box                        |             |                      | 1.2        | 1.3        | 33       | GENE         | 2864          | 0.390          | 4358         | 0.286          | 4857            | 0.268        |                       |                    | 0.272 |         |
| _   | 31.99       |                          | Metal Loss Call Box<br>Metal Loss Cluster  |             | Internal             | 5.0        | 5.3        | 33       | GENE         | 2864          | 0.454          |              | 0.298          | 4622            | 0.281        | 4360                  | 0.298              | 0.272 |         |
| _   |             | MLC-77-4                 |                                            |             | Internal             | 0.9        | _          | _        |              | 3291          | 0.454          | 3920<br>4586 |                |                 | 0.324        | 4500                  | 0.250              | 0.272 |         |
| -   |             | MLCB-77-17               | Metal Loss Call Box                        |             | Internal             |            | 1.8        | 23       | PITT         |               |                |              | 0.283          | 4915            |              |                       |                    |       |         |
| -   |             |                          |                                            |             |                      |            | _          |          |              |               |                |              |                |                 |              |                       |                    |       |         |
| -   |             | MLCB-77-18<br>MLCB-77-19 | Metal Loss Call Box<br>Metal Loss Call Box |             | Internal<br>Internal | 1.3<br>1.1 | 3.0<br>1.8 | 21<br>23 | gene<br>Pitt | 3377<br>3291  | 0.385<br>0.395 | 4528<br>4552 | 0.287<br>0.286 | 4843<br>4873    |              | 0.268                 |                    |       |         |

**Executive Summary** Well Information Feature List Metal Loss Features Depth Based Analysis Pressure Based Analysis **Burst Pressure Pressure Ratios** Feature Type Surface Location Hardware Reports Histograms

## Summary

- Advanced analysis from three axes of magnetic flux leakage data
  - Depth Based Analysis Length, Width, Depth
  - Pressures Based Analysis
    - Based on Client Selected Parameters
    - Five (5) formulae to determine Burst Pressure
      - Barlow, Canadian Z341, B31G, Modified B31G, Effective Area
    - Application of Safety Factors
    - Criteria for Feature Interaction
- Feature based reporting
  - Detailed information on each feature in the well

# Integrity Explorer - INTeX




## Wellbore Conditions Impacting Evaluation

- Green Cement: Most companies estimate 72 hours until cement is cured enough for evaluation
- Microannulus: From thermal contraction, thick mill varnish or hydrostatic differential from cementing to logging
- Thin Cement Sheath: At least 0.75" to attenuate signal fully otherwise good cement could look quite pessimistic
- Poor bonding to Formation: Thick wall cake, soft or unconsolidated formations
- Pipe in Pipe Conditions: Highly reflective surface of outer pipe can give unusual responses
- Lightweight Cement / Exotics / Contaminated cement



## Integrity eXplorer Ultra HD



#### Micro-annulus & TIE

Overly of Flex & Shear allows for MA detection removing pressure pass. Allows for Flex & Shear TIE acquisition

## Wellbore

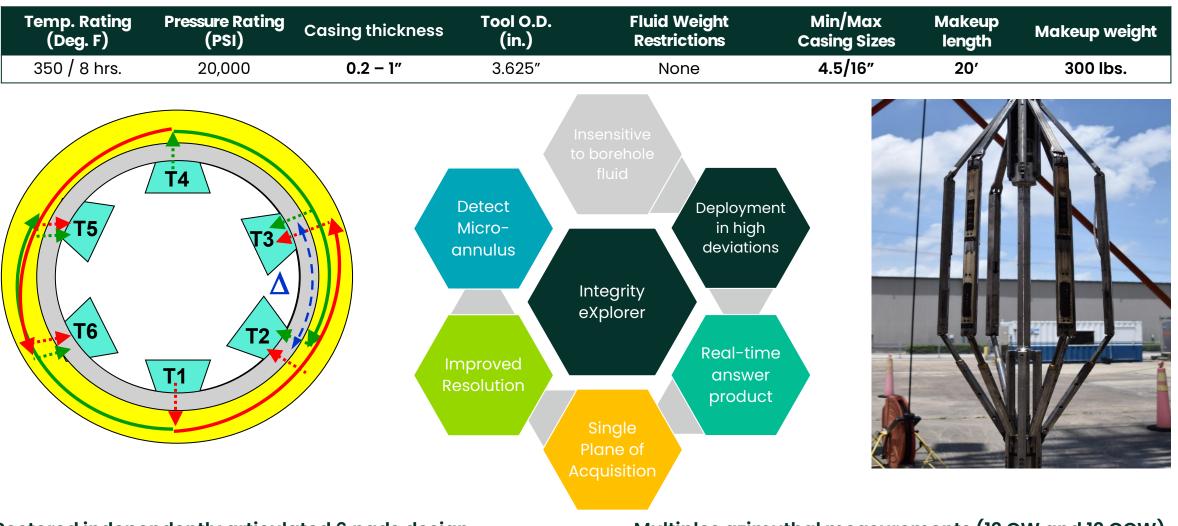
Insensitivity to type of or density of Liquid in the borehole, or lack thereof (air) including live wells

#### Casing Type Ability to acquire data in

Ability to acquire data in casings up 10 1.2" thick Coated Pipe or 28% Cr pipe

### Deliverables

Real-time answer product is available, not requiring timely post-processing


#### Cement

All types of cement density including foam.

#### Resolution

Tool measurement physics allow for a significant improvement in resolution including CW & CCW.

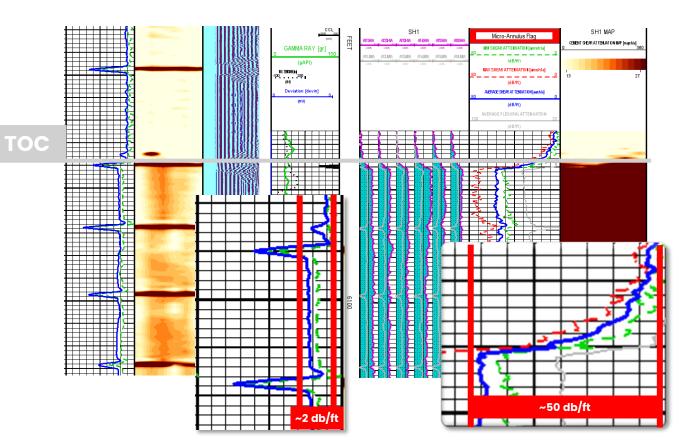
## Integrity Explorer



Sectored independently articulated 6 pads design

#### Fully compensated measurements

Multiples azimuthal measurements (12 CW and 12 CCW)


#### Centralized



21 Copyright 2023 Baker Hughes Company. All rights reserved

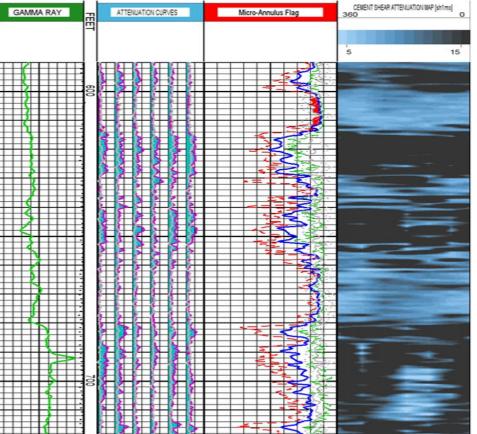
# Lightweight Cement Evaluation

- Traditional cement evaluation techniques cannot accurately measure lightweight cement bond.
- Compressional measurement in example shows only ~ 2db/ft attenuation.
- High dynamic range shear measurement from INTeX shows ~50 db/ft attenuation.





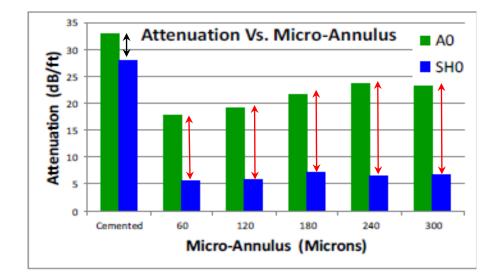
## Cement Evaluation Logging in Gas-filled Borehole

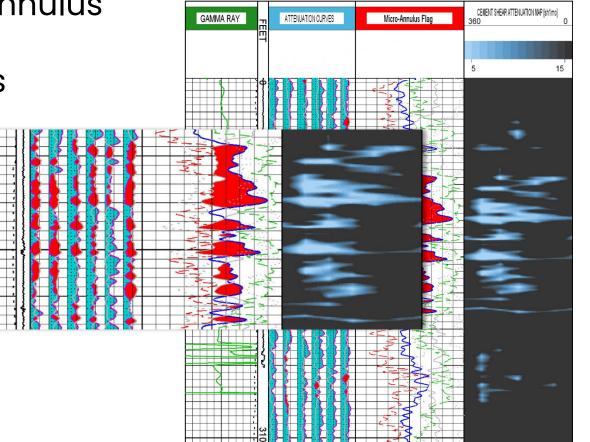

#### **Location: Northern US**

#### **Customer Challenge:**

 Evaluate cement in the absence of borehole fluids to determine zonal isolation

#### **Results:**


- Evaluated cement in gas-filled wellbore
- Removed the need for filling up the well with liquid
- Eliminated the need for additional operational and remedial services related to cement evaluation
- Determined long-term zonal isolation
- Saved valuable rig time and probable remediation costs






## **Microannulus Detection**

The difference in response of microannulus to Shear and Lamb wave is used to determine presence of microannulus without a pressurized logging pass.







## Aperio Pulse Echo Applications and Functionality



#### **Casing Inspection**

- Resonance Frequency
- Transit time
- Internal & External Corrosion
- Casing ID & OD
- Casing Thickness
- Azimuthal measurements



#### **Cement Evaluation**

- Resonance Decay
- Acoustic Impedance
- Top of Cement
- Top of Solids
- Casing Cut Depth
- Azimuthal Cement Placement



#### **Simultaneous Evaluation**

- Pulse Echo method
- Casing Inspection
- Cement Evaluation

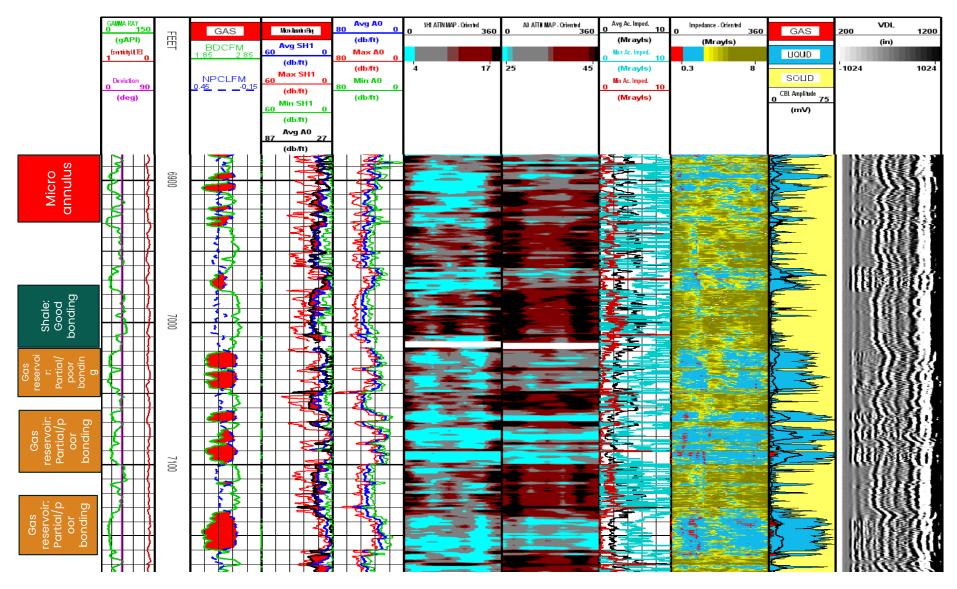


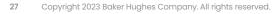
## Aperio Pulse Echo

| Тепsion<br><u>1250 1750</u><br>(Ibf) | 0 Sub Rotation Speed<br>0 (rps)<br>RB ULTeX<br>0 (deg)<br>(deg)<br>-1000 CCL<br>1000<br>(mV)<br>Eccentralisation<br>1 0<br>(in)<br>Gamma Ray<br>0 150<br>(gAPI) | NORMALISED FEA<br>0 Average Amplitude<br>0 (dB)<br>160<br>(dB)<br>0 (dB)<br>0 (dB)<br>0 (dB)<br>0 (dB)<br>0 (dB)<br>0 (dB)<br>0 (dB)<br>0 (dB) | itemal Radius Average<br>2<br>(in)<br>(in)<br>(in)<br>(in)<br>(in)<br>(in)<br>Deternal Radius Merage<br>2<br>(in)<br>(in) | ORMALISED RADIU<br>Normalised Radius<br>(in)<br>(in) | 0.1 0.6<br>(in)<br>Minimum Thickness<br>0.1 0.6<br>(in)<br>Maximum Thickness | NORMALISED<br>THICKNESS<br>0 360<br>(in) | 3 8 | Average impedance<br>0 10<br>(MRayl)<br>Winimum Impedance<br>0 10<br>(MRayl)<br>Nazimum Impedance<br>0 10<br>(MRayl) | GLS MAP<br>BONDED<br>LIQUID<br>GAS<br>O CBL Amplitude<br>O (%) | AL IMPED.<br>THRESHOLD<br>Impedance-Thresholds Applied<br>0 360<br>(MRayl)<br>0.3 8 | Gamma Ray<br>150   (gAPI)   200 1200   (us)   200 1200   (raw)   1 1024 |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 1050 1075 1                          |                                                                                                                                                                 |                                                                                                                                                |                                                                                                                           |                                                      |                                                                              |                                          |     |                                                                                                                      |                                                                |                                                                                     |                                                                         |

#### **Combinable with DAL or INTEX**

- ULTEX & DAL Gas Micro annulus when combined with Aperio PE
- ULTEX & DAL Liquid Micro annulus when combined with Aperio PE
- ULTEX & DAL Top Cement and Top of Solids identification and acquire VDL data
- ULTEX & INTEX used to differentiate solids (Barite) from cement bond, higher confidence in results combining two independent methods and combined casing and well integrity analysis


| Challenge                                  | Solution          |
|--------------------------------------------|-------------------|
| Simultaneous Cement & Casing<br>Evaluation | Yes               |
| Casing Sizes                               | 5 in to 20 in     |
| Borehole OBM weights                       | Up to 1.6<br>g/cc |
| Maximum operating temperature              | 350 DegF          |
| Maximum operating pressure                 | 20,000 PSI        |
| Maximum tool diameter                      | 3-5/8 in          |
| Azimuthal resolution                       | 6 degrees         |
| Vertical Resolution                        | 1.5 in            |
| Casing Thickness Range                     | 0.2 in - 1*       |
|                                            | in                |
| Logging Speed (recommended)                | 10-40             |
|                                            | ft./min           |


\*Provisional specifications, subject to change.

Currently there are active engineering tests ongoing to qualify the service to be ran in higher mud weights and different casing types, casing thickness ranges and cement types and cement weights.



## Aperio Pulse Echo - INTeX Combination







## **Questions?**





