

2023 PHMSA UNGS Public Workshop Research and Development Projects Tuan Tran, Abey John, Jonathan Wohlhagen

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Projects Over the Years

- Funded 8 Projects since 2018
 - 5 Closed, 3 Active
- \$5.3 Million dollars funded
- Multiple Research Outfits
 - C-FER
 - Battelle
 - Pipeline Research Council (PRCI)
 - Oceanit
 - Gas Technology Institute
 - Fossil Energy and Carbon Management

Pipeline and Hazardous Materials Safety Administration

U.S. Department of Transportation

Tubing and Packer Life Cycle Analysis Battelle Memorial Institute

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

- Used by operators now for various applications
 - Dual barrier system
- Do dual barrier systems improve system integrity?
 - Increased frequency and complexity of workovers / maintenance
 - Deliverability restrictions
 - Production casing inspection
 - Risk introduced

- Conducted by Battelle/Sandia (October 30, 2020)
- Assess the role of Tubing/Packer systems
- Based on 2022 Annual Report data
 - 2,477 wells with flow through production tubing
- Plan
 - Literature Review for data
 - Evaluation of well-entry impacts throughout tubing and packer life-cycle
 - Develop recommendations and improvements to current design

- No real database to collect failure data
 - Failure rate data
 - Safety data
- Developed a quantitative risk model
 - Used modeling based on API 580/581 methodology and storage well-specific model created by 2017 Joint Industry Task Force
 - Assessed risk of 4 different styles of wells
 - Used industry-accepted modeling techniques and typical data for reservoir and well deliverability
 - Factors (well design, reservoir pressure, total amount of stored gas, nearby population density) and evaluate risk before/after T&P installation.

- Findings
 - T&P may reduce risk in some, but not all UGS wells based on risk modeling
 - Low risk wells would generally not benefit from a T&P application
 - T&P-related workovers: frequency and complexity
 - Moderate risk wells based on likelihood of failure will depend
 - Possible cost-beneficial option at reducing risk
 - High Risk wells based on likelihood of failure will depend
 - T&P systems may introduce more risk due to workover needs
 - Quantitative risk model should be assessed for each well individually to determine

Safety Administration

- Project Link
 - https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=745

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Reliability of Subsurface Safety Valves Battelle Memorial Institute

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

- General usage
 - To cutoff flow to a well that is connected to a hydraulic switch (hydraulic fluid and pressure)
 - Areas with trains, airplanes, and offshore production
- Do subsurface safety valves improve system integrity?
 - General Reliability/Maintenance
 - Control system, Annual testing
 - Risk Introduced
 - Generally installed on Tubing & Packer
 - Workover, malfunction, repair
 - Leak location

Image courtesy of Baker Hughes

- Conducted by Battelle/Sandia (October 30, 2020)
- Assess the role of Subsurface safety valves (SSSV)
- Based on 2022 Annual Report data
 - 539 wells with subsurface safety valves
- Plan
 - Literature Review for data
 - Evaluation of SSSV characteristics and SSSV-related workover safety risks
 - Develop recommendations and improvements

- No real database to collect failure data
- Developed a quantitative risk model
 - Used modeling based on API 580/581 RP methodology and storage well-specific model created by 2017 Joint Industry Task Force
 - Assessed risk of 4 different styles of wells
 - Factors such as different reservoir rate potentials, feed volumes/pressures, population densities.
 - If tubing-mounted, then additionally Tubing/Packer should be assessed.
 - Evaluate risk before/after SSSV installation

- Findings
 - Low risk wells would generally not benefit from a SSSV application
 - Moderate risk wells based on likelihood of failure will depend
 - Possible cost-beneficial option at reducing risk
 - High Risk wells based on likelihood of failure will depend
 - SSSV's may introduce more risk due to workover needs
 - SSSV's may reduce risk in some, but not all UGS wells based on risk modeling
 - Quantitative risk model should be assessed for each well individually to determine

- Project Link
 - https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=743

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Evaluation of Well Casing Integrity Management for Underground Storage Wells Pipeline Research Council International

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

- Project Purpose
 - Identify logging technologies- Ultrasonic testing (UT), Magnetic flux leakage(MFL), Multi-finger Caliper (MFC), Electromagnetic (EM) Technologies
 - Factors affecting tool response
 - Methods calculating remaining casing strength
 - 4.5", 5.5", 7" casing sizes. All J55
 - Properly allocate resources to address high risk issues
 - Predict areas of concerns and classify levels of risks

Image courtesy of Baker Hughes

Image courtesy of Baker Hughes

- Project Findings
 - MFL and UT generally have capability to conduct highresolutions inspection of isolated casing corrosion features
 - Usage of multiple tools helps minimize uncertainties.
 - Operator / Vendor Communication
 - MFC used for measuring casing inner wall
 - Possible error from assumption of nominal casing dimension
 - Initial screening tool
 - EM tools for through-tubing logging have limitations
 - Estimate average wall loss around casing
 - Detection of only severe metal loss
 - Additional research warranted such as establish expectation of tool's capabilities, detection range.

U.S. Department of Transportation

- Project Findings (continued)
 - Remaining Burst Strength prediction models
 - B31G, modified B31G, RSTRENG, LPC-1, BS 7910, API 579-1
 - Analytical prediction models all under-estimated from 10%-36%
 - ASME B31G and Modified B31G found to have lowest random error levels
 - Casing diameter-to-thickness ratio accuracy
 - Further lab testing and algorithm development
 - Strain-rate effect on remaining burst strength of corroded casing
 - Test broader range of metal loss features, casing grades
 - Consider more rigorous downhole corrosion logging system qualification guideline
 - Possibly based on API Standard 1163- standardized workflow

- Project Findings (continued)
 - Research to identify and understand additional downhole threats that compromise casing integrity
 - Environmental-assisted cracking in casing pipe and threaded connections
 - Casing deformation in weak formation or tectonically active areas or salt cavern storage wells
 - Long-term casing connection sealability and structural integrity for wells using API connections or subjected to high frequency temperature and pressure cycles
 - Research on cement integrity and remediation methods to improve well integrity

- Project Link
 - https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=747

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Risk Assessment and Treatment of Wells **C-FER Technologies**

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Risk Assessment and Treatment of Wells

- Project Purpose
 - Develop a relative, quantitative and probabilistic risk assessment guidelines
 - Failure frequency and failure consequence estimation
 - Develop guidelines for use
 - Provide support for regulators to evaluate risk assessment methods and models

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Risk Assessment and Treatment of Wells

- Project Summary
 - Quantitative risk analysis is highly dependent on assumed failure frequencies and failure modes
 - Cavern wells have a higher safety and environmental risk
 - Storages do not pose a significant safety risk unless in close proximity to the wellhead
 - Modest setback distances will increase safety
 - Well entry activities are the largest contributor to risk
 - Well configurations can lower risk but have a lower life-cycle

Risk Assessment and Treatment of Wells

- Project Link
 - https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=740

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Advancement of Through-Tubing Casing Inspection For Underground Storage Wells Pipeline Research Council International

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Advancement of Through-Tubing Casing Inspection

- Project Purpose
 - Provide an understanding for through-tubing casing corrosion logging technology (magnetic eddy current)
 - Improving technology
 - Develop a reliability-based assessment framework
 - Three rounds of lab tests
 - Perform a field trial
 - Ongoing project

Advancement of Through-Tubing Casing Inspection

- Lab Trials
 - C-FER Technologies Lab
 - 3 rounds of testing
 - Each round 3 different casings are tested with same-size tubing
 - Casings: 4.5", 5.5", 7". All J55 and SMLS
 - Tubing: 2-7/8" that is L80 and SMLS
 - Metal loss features machined into casing
 - Vendors are Baker Hughes, GoWell, Schlumberger
 - Round 1 testing completed

Advancement of Through-Tubing Casing Inspection

- Project Link
 - https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=943&text1=

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Smart Well Assessment and Reservoir Management System (SWARMS) Oceanit Laboratories, Inc.

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Smart Well Assessment and Reservoir Management System

- Project Purpose
 - Provide an innovative approach for leak identification and mitigation
 - Using nano-technology buoyant particles
- Project Findings
 - SWARM particles are suspended in topkill fluid to help kill wells
- Project has submitted for phase 2 of research

Smart Well Assessment and Reservoir Management System

- Project Purpose
 - Develop a reliability-based assessment framework
 - Perform a field trial
 - Ongoing project

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Smart Well Assessment and Reservoir Management System

- Project Link
 - https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=975&text1=

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Establishing the Technical Basis for Enabling Safe and Reliable Underground Hydrogen Storage Operations Fossil Energy and Carbon Management.

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Establishing the Technical Basis for Enabling Safe and Reliable Underground Hydrogen Storage Operations

- Project Objectives
 - Identify and understand existing PHMSA regulatory functions
 - Quantify the suitability of existing UGS facilities
 - H2 resource loss processes, UGS asset degradation, and estimating transient behavior
 - Ongoing project
 - Project Purpose
 - Establish the technical criteria for pure and blended hydrogen storage
 - Providing guidance: assessing the suitability of existing engineered systems, quantifying the possible operational expectations during conversion, and forecast transient operational behavior and end-state performance.

Establishing the Technical Basis for Enabling Safe and Reliable Underground Hydrogen Storage Operations

- Project Link
 - https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=999

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Expanding Hydrogen Storage to Porous Rock Formations: A **Framework for Estimating Feasibility & Operational** Considerations **Gas Technology Institute**

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Expanding Hydrogen Storage to Porous Rock Formations: A Framework for Estimating Feasibility & Operational Considerations

- Project Objectives
 - industry expansion of underground hydrogen storage beyond salt caverns
 - Considerations for selecting suitable porous rock formations as potential storage sites
 - Guidelines for monitoring potential hydrogen movement or loss
 - Ongoing project
 - Project Purpose
 - Demonstrate the feasibility of large-scale underground hydrogen storage (UHS) in porous rock formations through bench-scale experiments and field scale dynamic reservoir simulations.

Expanding Hydrogen Storage to Porous Rock Formations: A Framework for Estimating Feasibility & Operational Considerations

- Project Link
 - https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=984

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Pipeline and Hazardous Materials Safety Administration

2

Lunch

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

