

Pipeline and Hazardous Materials Safety Administration Office of Pipeline Safety

Pipeline Safety Research & Development Program

Workgroup#6: Breakout Tanks – Methods to Prevent Corrosion of Tank Bottoms

Zaid Obeidi

December 1, 2021

Pipeline and Hazardous Materials Safety Administration

Good Morning & Welcome!

PHMSA Leader: Zaid Obeidi, General Engineer

- **Industry Co-Leader:** Chris Aldrich, Integrity Management Program Coordinator, Marathon Pipe Line, LLC.
- **Industry Co-Leader:** Justin Samuel, Engineer, Integrity Tech Services, Phillips 66
- **Industry Co-Leader:** John G Field, Corrosion Engineer, Energy Transfer Partners
- Thank you for choosing this Workgroup
- We have an important charge for you:
 - Listening/Learning
 - Assist in developing PHMSA's future research agenda

Workgroup Objectives

- 1. Updating the audience on the challenges and funded research to date associated with this workgroup subject
- 2. Identifying technical gaps that address key challenges
- 3. Developing a list of important topics for future PHMSA funded research from identified gaps

Pipeline and Hazardous Materials Safety Administration

Agenda at a Glance

Pipeline and Hazardous Materials Safety Administration

Today's Agenda – December 1

Time	Presentation	Speaker
10:00 AM	Introduction to Workgroup	Workgroup Leader PHMSA
		Workgroup Leader Industry
10:30 AM	Research Funding Organization Presentations	Presenters 1-4
11:30 AM	Q&A	
12:00 PM	Contractor Support Introduction & Description	S&K Facilitate
12:10 PM	Research Gap Brainstorming Session	Workgroup Participants
12:45 PM	Lunch Break & CAAP Poster Presentations During Lunch similar gaps will be combined.	
2:45 PM	Review gaps identified following the combination.	Workgroup Leaders
3:15 PM	Sticky Note Exercise – Round 1 & 2 Workgroup prioritizes R&D Gaps	S&K Facilitate
4:15 PM	Break	
4:30 PM	Workgroup Research Topic Roadmapping	Workgroup Leaders &
		Participants
6:00 PM	Workgroup Closeout	Workgroup Leader
	Day 2 closeout	

0

U.S. Department of Transportation

Tomorrow's Agenda – December 2

10:00 a.m. PHMSA's Year-Round R&D Solicitation10:10 a.m. Workgroup Readouts

The results of this Workgroup will be presented at 10:10 a.m. tomorrow ETZ.

Return to the event meeting page to find the entry link to Day 3.

PHMSA Funded Research

Pipeline and Hazardous Materials Safety Administration

PHMSA Related Research

- No prior related research addressing tank integrity challenges
- However, significant focus within areas of corrosion in pipelines
- PHMSA will now build a research portfolio with the output from this group

Pipeline and Hazardous Materials Safety Administration

PHMSA Policy & Active work

Pipeline and Hazardous Materials Safety Administration

Tank bottom corrosion challenges

- PHMSA's goal is to prevent any Spill, through Corrosion Mitigation.
- Repeated Incidents of tank bottom release of hazardous liquid, some with less than 20 years in service.
- Constant corrosion inspection findings on tank bottom.
- PHMSA / Industry understanding of Cathodic Protection (CP) application.
- Lack of specific CP designs for all types of Breakout tanks.

U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

Related Current Regulations

- 49 CFR §195.2 Definitions
- 49 CFR §195.3 What documents are incorporated by reference partly or wholly in this part?
- Many Industry standards are incorporated by Reference in 49 CFR §195.3
- 49 CFR § 195.553 What special definitions apply to this subpart?
- 49 CFR § 195.563 Which pipelines must have cathodic protection?
- 49 CFR § 195.565 How do I install cathodic protection on breakout tanks?
- 49 CFR § 195.571 What criteria must I use to determine the adequacy of cathodic protection?
- 49 CFR § 195.573 What must I do to monitor external corrosion control?

Pipeline and Hazardous Materials Safety Administration

PHMSA Incorporated By Reference (IBR) Tank Documents

	Current IBR'd	Current Published
API Pub 2026	2 nd Edition	3 rd
API RP 651	3 rd Edition	4 th
API RP 652	3 rd Edition	5 th
API RP 2003	7 th Edition	8 th
API RP 2350	3 rd Edition	5 th
API Spec 12F	12 th Edition	13 th
API Std 510	9 th Edition	10 th
API Std 620	11 th Edition	12 th
API Std 650	11 Edition	13 th
API Std 653	3 rd Edition	5 th
API Std 2000	6 th Edition	7^{th}
API Std 2510	8 th Edition	9 th

2

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

PHMSA active work on Corrosion Techniques

- Report to Congress (Aboveground Storage Tanks Review of Current and New Corrosion Control Techniques).
- PHMSA/API SCAST collaboration review on all Standards updated Ballots including API RP 651-Cathodic Protection of Aboveground Petroleum Storage Tanks and API Technical Report 655 - Vapor Corrosion Inhibitors for Storage Tanks.
- Possible future IBR documents
- NACE SP0193 External Cathodic Protection of On-Grade Carbon Steel Storage Tank Bottoms.

U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

Tank Bottoms Designs & Technologies Gaps

- Volatile Corrosion Inhibitors (VCI) performance and effectiveness:
- Determine the effectiveness of VCIs in the field under varying conditions \bigcirc across the range of geographical locations around the country or the world.
- Improve in-situ monitoring of VCI performance by developing new Ο monitoring protocols or new monitoring systems.
- Determine how to best apply VCIs to make sure the entire tank bottom is Ο protected.
- Determine VCI degradation rate for different tank environments. \bigcirc
- Determine if bacteria activity has an impact on the effectiveness of VCIs Ο and if biocides effect the protection provided by VCIs through laboratory and field studies.
- Determine criteria where CP and VCIs are used to together, particularly in \bigcirc highly corrosive environments.

14

Safety Administration

Tank Bottoms Designs & Technologies Gaps

- Tank designs on concrete pads (steel in contact with concrete)
- Concrete pad thickness
- Sloping of the inward pad or outward
- Groves within pads for drainage
- Sealing of chime to concrete to prevent intrusion of water and maintenance interval of that seal
- Elevation of concrete pads above the secondary containment floor for moisture control
- Determine Tank designed with high density polyethylene (HDPE) liner
- Determine Tank designed with concrete pads placed on top on HDPE liner
- Determine Tank design for double bottom tank (e.g., El Segundo Tank)

Tank Bottoms designs Gaps/ discussion

- Concrete = Electrolytic Contact with the Soil.
- HDPE Liner = Isolated from contact with Soil.

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Thank You!

Research Program Contacts

Sentho White

Director – Engineering & Research Department of Transportation Pipeline & Hazardous Materials Safety Administration Office of Pipeline Safety (202) 366-2415 sentho.white@dot.gov

Robert Smith R&D Program Manager Department of Transportation Pipeline & Hazardous Materials Safety Administration Office of Pipeline Safety (919) 238-4759 robert.w.smith@dot.gov

Kandilarya Barakat

Operations Supervisor Department of Transportation Pipeline & Hazardous Materials Safety Administration Office of Pipeline Safety (202) 941-8623 <u>kandilarya.barakat@dot.gov</u>

Nathan Schoenkin Senior Engineer Department of Transportation Pipeline & Hazardous Materials Safety Administration Office of Pipeline Safety (202) 740-1978 nathan.schoenkin@dot.gov

