

Pipeline and Hazardous Materials Safety Administration Office of Pipeline Safety

Pipeline Safety Research & Development Program

Workgroup#1: Rehabilitation of Aging Cast Iron Pipelines

Chris McLaren

December 1, 2021

Good Morning & Welcome!

PHMSA Leader: Chris McLaren, Program Manager Industry Co-Leader: Saadat Khan, Director of Gas Distribution Asset & Engineering NYS, National Grid

- Thank you for choosing this Workgroup
- We have an important charge for you:
 - Listening/Learning
 - Assist in developing PHMSA's future research agenda

Workgroup Objectives

- 1. Updating the audience on the challenges and funded research to date associated with this workgroup subject
- 2. Identifying technical gaps that address key challenges
- 3. Developing a list of important topics for future PHMSA funded research from identified gaps

Agenda at a Glance

Today's Agenda – December 1

Time	Presentation	Speaker			
10:00 AM	Introduction to Workgroup	Workgroup Leader PHMSA			
		Workgroup Leader Industry			
10:30 AM	Research Funding Organization Presentations	Presenters 1-4			
11:30 AM	Q&A				
12:00 PM	Contractor Support Introduction & Description	S&K Facilitate			
12:10 PM	Research Gap Brainstorming Session	Workgroup Participants			
12:45 PM	Lunch Break & CAAP Poster Presentations During Lunch similar gaps will be combined.				
2:45 PM	Review gaps identified following the combination.	Workgroup Leaders			
3:15 PM	Sticky Note Exercise – Round 1 & 2 Workgroup prioritizes R&D Gaps	S&K Facilitate			
4:15 PM	Break				
4:30 PM	Workgroup Research Topic Roadmapping	Workgroup Leaders & Participants			
6:00 PM	Workgroup Closeout Day 2 closeout	Workgroup Leader			

Tomorrow's Agenda – December 2

10:00 a.m. PHMSA's Year-Round R&D Solicitation

10:10 a.m. Workgroup Readouts

The results of this Workgroup will be presented at 10:10 a.m. tomorrow ETZ.

Return to the event meeting page to find the entry link to Day 3.

PHMSA Funded Research

PHMSA Related Research

Project Title	Summary
Above-ground Detection Tools Including Disbondment and Metal Loss for all Metals Including Cast-Iron Graphitization (\$415,121)	Project developed/tested a mobile platform for detecting coating disbondment and external corrosion by measuring magnetic fields from above ground. Alternating current is injected into the pipe being tested and creates magnetic fields around the pipe. These fields are affected by corrosion and disbondment.
Characterization and Fitness for Service of Corroded Cast Iron Pipe (\$514,140)	The project developed a Fitness-For-Service model and method for operators to characterize and grade graphitic corrosion defects on cast iron natural gas pipe.
Broadband Electromagnetic Technology Sensor to Assess Ferrous Pipes without Removing Coatings in Both Traditional and Keyhole Excavations (\$293,403)	The project enhanced/tested a portable, cost effective, and reliable direct-assessment tool capable of detecting metal loss, pits, and cracks in ferrous pipes without coating removal and can be used through keyhole and traditional excavations.

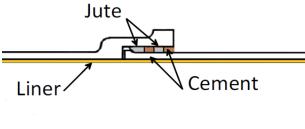
PHMSA Related Research (cont.)

Project Title

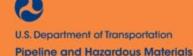
Technology Transfer, Demonstrations and Post-Mortem Testing of Cast Iron and Steel Pipe Lined with Cured-in-Place

Evaluation of Structural Liners for the Rehabilitation of Liquid and Natural Gas Piping Systems (\$425,650)

Pipe Liners (\$477,571)


Structural Liner Installation

Summary


The project reviewed CIPP performance information and tested extracted field-aged CIPP lined pipe to extremes. A demonstration assessed the full planning, installation and post-installation process that can be evaluated by present-day standards and concerns

Project conducted an assessment of structural liners and composites and their interaction with the pipe to demonstrate their capability to carry the loads of a degraded host pipe.

Notable Research Impacts

- Project final reporting provide very useful information about the issues covered
 - Several papers have been published
- No Technology Transfer yet registered to a vendor
- No Knowledge Transfer yet registered to standards bodies

Aboveground Assessment

Related Policy Issues

Slide title

- §192.489 Remedial measures: Cast iron and ductile iron pipelines.
- (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a degree where a fracture or any leakage might result, must be replaced.
- (b) Localized graphitization. Each segment of cast iron or ductile iron pipe on which localized graphitization is found to a degree where any leakage might result, must be replaced or repaired, or sealed by internal sealing methods adequate to prevent or arrest any leakage.

Slide title

Reconditioned Cast Iron

NOTICE: This report is required by 49 CFR Part 191. Failure to report may result in a civil penalty as provided in 49 USC 60122.

OMB No. 2137-0629 Expiration Date 5/31/2024

			DOT USE ONLY	
	U.S. Department of Transportation	ANNUAL REPORT FOR CALENDAR YEAR 20	Initial Date	\neg
Ι `		_	Submitted	
1	Pipeline and Hazardous Materials	GAS DISTRIBUTION SYSTEM	Report	
ı			Submission Type	
L	Safety Administration		Date Submitted	

PART B - SYSTEM DESCRIPTION Report miles of main and number of services in system at end of year. 1. GENERAL											
	UNPROTECTED CATHODICALLY PROTECTED		PLASTIC	CAST/ WROUGHT	DUCTILE IRON	COPPER	OTHER	Reconditioned Cast Iron	SYSTEM TOTAL		
	BARE	COATED	BARE	COATED		IRON					
MILES OF MAIN					Calc	Calc	Calc	Calc	Calc	Calc	Calc
NO. OF SERVICES					Calc	Calc	Calc	Calc	Calc	Calc	Calc

Slide title

https://www.phmsa.dot.gov/pipeline/gas-distribution-integrity-management/gas-distribution-integrity-management-program-

performance-measures

Pipeline Miles by Material - Gas Distribution

Time run: 11/30/2021 1:15:24 PM

Portal - Data as of 11/29/2021 9:31:20 PM

Region: (All Column Values) State: (All Column Values)

***************************************				2020
System Type	Pipe Material	Total Miles	% of Miles	# of Services
MAIN	STEEL	519,196.0	22.7%	
	PLASTIC	787,876.4	34.5%	
	OTHER MATERIALS	1,299.0	0.1%	
	IRON	20,490.9	0.9%	
	COPPER	8.5	0.0%	
SERVICES	STEEL	199,629.0	8.7%	15,245,043
	PLASTIC	718,883.5	31.5%	52,272,825
	OTHER MATERIALS	27,453.5	1.2%	2,287,481
	IRON	91.1	0.0%	7,191
	COPPER	9,425.2	0.4%	655,762
Grand Total		2,284,353.1	100.0%	70,468,302

			MAIN			SERVICES			
Pipe Material	Pipe Material Detail	Calendar Year	Total Miles	% of Miles	# of Services		% of Miles		
IRON	RECONDITIONED	2020	34.5	0.17		0.0	0.0		
	CAST IRON	2019	33.0	0.15		0.0	0.02	1	
		2018	28.2	0.12		0.0	0.0		
		2017	26.8	0.11		0.0	0.0		
		2016	20.9	0.08		0.0	0.0		
		2015	20.7	0.07		0.0	0.0		
	DUCTILE IRON	2020	476.3	2.32		2.1	2.29	207	
		2019	493.0	2.26		2.2	2.18	219	
		2018	513.0	2.19		2.5	2.89	244	
		2017	536.2	2.14		2.6	2.68	250	
		2016	547.5	2.05		2.7	2.24	260	
		2015	574.7	2.03		2.9	2.25	282	
		2014	624.7	2.08		3.1	2.07	301	
		2013	671.7	2.13		3.4	2.02	320	
		2012	730.1	2.20		3.5	1.90	336	
		2011	750.4	2.18		6.6	3.06	726	
		2010	784.0	2.22		11.8	5.21	1,093	
	CAST/WROUGHT IRON	2020	19,980.1	97.51		89.0	97.71	6,984	
		2019	21,272.6	97.59		99.2	97.80	8,064	
		2018	22,868.0	97.69		84.2	97.11	6,985	
		2017	24,471.4	97.75		93.4	97.32	7,652	
		2016	26,201.0	97.88		118.5	97.76	9,345	
		2015	27,764.9	97.90		127.7	97.75	10,028	
		2014	29,359.1	97.92		149.2	97.93	11,618	
		2013	30,904.2	97.87		164.3	97.98	11,991	
		2012	32,406.4	97.80		183.5	98.10	13,511	
		2011	33,668.5	97.82		207.9	96.94	15,408	
		2010	34,591.5	97.78		215.4	94.79	20,728	

Thank You!

Research Program Contacts

Sentho White

Director – Engineering & Research Department of Transportation Pipeline & Hazardous Materials Safety Administration Office of Pipeline Safety (202) 366-2415 sentho.white@dot.gov

Robert Smith

R&D Program Manager
Department of Transportation
Pipeline & Hazardous Materials
Safety Administration
Office of Pipeline Safety
(919) 238-4759
robert.w.smith@dot.gov

Kandilarya Barakat

Operations Supervisor
Department of Transportation
Pipeline & Hazardous Materials Safety
Administration
Office of Pipeline Safety
(202) 941-8623
kandilarya.barakat@dot.gov

Nathan Schoenkin

Senior Engineer
Department of Transportation
Pipeline & Hazardous Materials Safety
Administration
Office of Pipeline Safety
(202) 740-1978
nathan.schoenkin@dot.gov

