Hydrogen Storage Subsurface Research

Mark W. Shuster

Hydrogen Working Group, Bureau of Economic Geology

GeoH₂

- GeoH₂ is a new consortium at the University of Texas to conduct geoscience & economic research to facilitate and advance the development of a hydrogen economy <u>at scale</u>
- Research focus:
 - Geological storage of hydrogen
 - Techno-economics of integrated value chains and market analysis
 - Novel subsurface concepts (e.g. in-situ generation)
- World-class research capability with proven track-record of high-value research and impact
- Multi-company consortium-approach offers cost-effective means of R&D and knowledge transfer
 - Members steer research
 - Leverage multi-member participation
 - Focus on applied research

Team GeoH₂

Resource Characterization, Geology, Geophysics, Petrophysics, Geomechanics, Reservoir Engineering, Energy Economics

JP Nicot

Ian Duncan

Geology

Ning Lin

Bo Ren

Aura Araque

Seyyed Hosseini

Farzam Javadpour

Peter Eichhubl Lorena Moscardelli

Shuvajit Bhattacharya

Larry Lake

Kamy Sepehrnoori

Mojdeh Delshad

Mehran Mehrabi

Geological Storage

- Geological storage provides best options for large capacity storage
- Viable geological storage
 - Dissolution caverns in salt domes
 - Depleted oil & gas fields
 - Saline aquifers
 - Lined caverns
- Geographic coverage important
 - Generation sites
 - End-use sites
 - Infrastructure

The University of Texas at Austin Center for Subsurface Energy and the Environment Cockrell School of Engineering

Indicative H₂ Storage Options by Unit Capacity

Data from Ahluwalia et al, 2019

GeoH₂

Bulk Geological Storage of H₂

Туре	Status	Pros	Cons	Research Needs
Salt (dissolution) caverns	3 industrial H ₂ storage sites in Texas; 1 in Scotland	 Lowest cost bulk storage Proven technology Rapid injection/production 	 Limited geographic distribution of suitable salt deposits Brine disposal Limited size 	 Resource assessment, expanded catalog of suitable sites Screening criteria Cost/life-cycle analysis
Depleted oil & gas fields	Untested for H_2 storage, proven for NG, natural gas/ H_2 blends	 Wide geographic distribution Suitability of sealing caprocks Potential for stacked CCS 	 H₂-reservoir interaction is not well understood Integrity of abandoned wells Oil/gas interaction 	 Resource assessment, catalog of suitable sites Screening criteria/best practices Reservoir simulations Chemical reactions Geomechanics, risk analysis Cost/life-cycle analysis Pilot field tests
Aquifers	Untested for H_2 storage, proven for NG, natural gas/ H_2 blends	 Widest geographic distribution Potential for stacked CCS Brine disposal 	 H₂-reservoir interaction is not well understood Suitability of sealing caprocks 	
Lined rock cavern	Not in US, one site in Sweden	 Suitable for high-purity H₂ Soft limestone in TX ideal 	Limited sizeHigh CAPEX	 Cost/life-cycle analysis Site characterization Geomechanics

Integrated Subsurface Evaluation

- **Reservoir characterization for** • regional resource assessment
- **Geophysics & petrophysics for** • trap-scale reservoir characterization
- **Reservoir flow simulation** \bullet optimization of well geometry & injection/production strategy
- Seal & seismic risk analysis •
- **Techno-economic analysis** •
- Field test design \bullet

Bureau of

Economic Geology

Integrity monitoring

Storage Resource assessment – link H₂ and CCS

infrastructure

Geophysics for H₂ storage

P-wave_frm_5

Caprock

Reservoir

Dept

- Use geophysical surveys and techniques to evaluate suitable reservoirs for H2 storage in the subsurface
- Integrate geology, geophysics, and reservoir engineering to estimate H2 storage capacity
- Monitor storage

Reverse Time Migration Thompson et al. (2021) SMRI

Synthetic seismic wedge model in sandstone reservoir

Bhattacharya, 2021

2156

Hydrogen Storage in Salt Caverns

- Current H₂ subsurface storage method in the onshore Texas Gulf Coast
- Need to improve our ability to predict internal shear zones/impurities to maximize placement of caverns in salt domes
- Understand feasibility of H₂ storage in caverns in bedded salt

https://www.domeenergy.com/understandingsalt-domes/

Predicting Heterogeneities in Domal Salt

Hydrogen Storage in Porous-media Reservoirs (Depleted Fields and Saline Aquifers)

- Leakage
- Fluid-rock interactions
- Injection/production
- Gas-gas and gasbrine interactions

Reservoir Simulation Workflow

- Validate the PVT model against measured H₂ properties (density, solubility, and viscosity)
- Use calibrated history matched dynamic geological models:
- Compare storage results of H_2 with NG and CO_2
- Sensitivity cases and optimize H₂ storage

From Delshad, 2021 unpub.

Compare H₂ vs. NG Storage

Gas volumes stored in the reservoir

Gas saturation after the last injection cycle

Compared to NG

- 10% less H_2 volumes injected due to well constraints (H_2 higher insitu pressure)
- 32% less working gas capacity
- 3% higher average H₂ saturation in the top layer

Need to optimize storage for H₂ due to its different properties

From Delshad, 2021 unpub.

Risk analysis: Leakage potential, top seal integrity & induced seismicity

- Diffusion into seal/caprock
- Two-phase flow into seal
- Chemical interaction with top seal may affect chemically aided fracture growth & fault reactivation

Diffusion modeling

Two-phase flow modeling

Calculation of fault failure stress

Hydrogen Value Chain Analysis

What is the <u>optimized</u> infrastructure buildout for scaling up a hydrogen sector as part of the <u>energy system</u>?

- What are the optimum storage and transportation options for various market scenarios ?
- Interconnection and tradeoff of the new technologies versus existing options?
- Opportunities for conversion of oil and gas infrastructure to hydrogen

Supply ? Location? Demand ? Usage ?

• Many scenarios...many questions

The University of Texas at Austin Center for Subsurface Energy and the Environment Cockrell School of Engineering Storage ? Salt cavern ? Depleted Field ? Saline Aquifer ?

Infrastructure ?

Techno-economic analysis Storage value and cost modeling

Estimate total demand for H_2 as energy carrier and investment cost and return for H_2 storage using demand scenarios.

- Input: Storage process cost and capacity parameters / Demand assessment (prices and demand quantity)
- Output: Cost estimates of H₂ storage / Valuation of H₂ storage project (Net Present Value, Internal Rate of Return)

Calculations for West Texas Araque & Lin, unpublished

Thank You !

Contact:

Mark Shuster Deputy Director PI, GeoH₂ mark.shuster@beg.utexas.edu Peter Eichhubl Senior Research Scientist Co-PI, GeoH₂ peter.eichhubl@beg.utexas.edu

