

PHMSA Pipeline and Hazardous Materials Safety Administration Pipeline Transportation: Hydrogen and Emerging Fuels R&D Public Meeting and Forum, Nov. 30-Dec. 2, 2021 (Virtual)

Corrosion of Pipelines: from Machine Learning-Guided Damage Detection to Prevention/Mitigation

Dr. Zhibin Lin, P.E.

Dept. Civil, Construction, and Environmental Engineering North Dakota State University

Dec. 1st, 2021

Acknowledgment

- Sponsors
 - US Department of Transportation-PHMSA
 - (DTPH5616HCAP03, 693JK318500010CAAP and 693JK31850009CAAP)

PHMSA Pipeline and Hazardous Materials Safety Administration

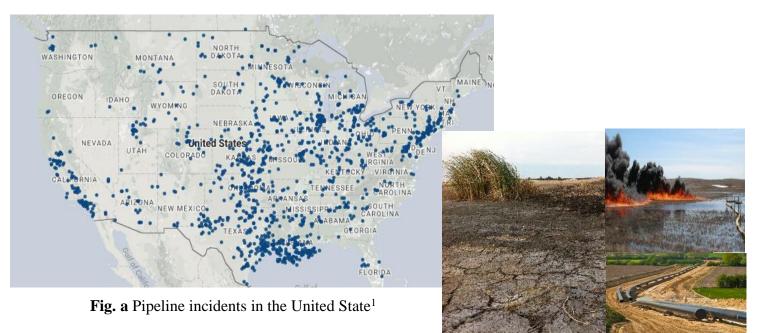
Collaborators

Dr. Long Jiang (NDSU), Dr. Bashir Khoda (Umaine) Dr. Xiaoning Qi (NDSU), Dr. Dante <u>Battocchi</u> (NDSU)

• Group members

Dr. Hong Pan (postdoc), Dr. Xingyu Wang, Dr. Mingli Li Zi Zhang, Matthew Pearson, Andrew Mahoney

NDSU NORTH DAKOTA



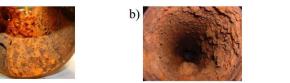
- 1. Background
- 2. Proposed Concept
- 3. Case Study
- 4. Summary

1. Background

• Corrosion of oil/gas metallic pipelines

Fig. b Pipeline spill²

NDSU NORTH DAKOTA STATE UNIVERSITY


[1]. Photos from http://projects.propublica.org/pipelines/

 $\cite{2.1} ttp://www.occupy.com/article/20000-barrels-spilled-north-dakota-pipeline-rupture?qt-article_tabs=2$

1. Background

a

• Corrosion of oil/gas metallic pipelines

NORTH DAKOTA STATE UNIVERSITY

Fig. 1 Internal corrosion: a) localized pits¹, b) fouling² and c) wear/erosion³

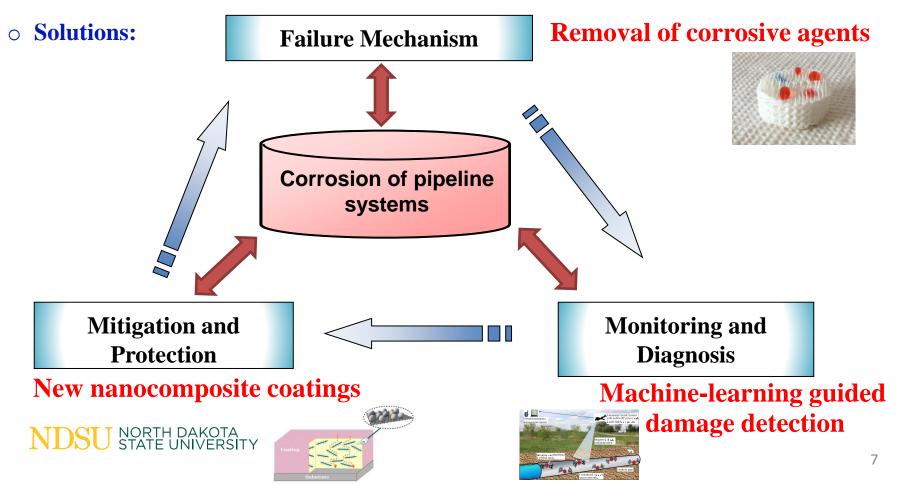
Accident	Location	Year	Loss
Pipeline spill	Tioga	2014	One gas pipeline exploded and burned
Pipeline spill	Tioga	2013	865,000 gallons (<u>one of the largest to happen onshore in</u> <u>U.S. history</u>)
Pipeline spill	Sargent County	2011	Spilling 400 barrels of crude oil
Pipeline spill	Neche	2010	Releasing 3,784 barrels of crude oil
Pipeline spill	Mantador	2004	Residents were evacuated, and a rail line was shut down
Pipeline spill	Barnes County	2003	Releasing 9,000 barrels of propane
Pipeline ruptured	Bottineau	2001	1.1 million US gallons (4,200 m ³) of gasoline burned
Pipeline spill	Harwood	2001	Spilling 40 barrels of fuel oil

Table 1. Pipeline accidents in recent years at North Dakota (Pan et al., 2017⁴).

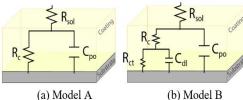
[1]. Photos from http://www.flickriver.com/photos/59127492@N07/5416927808/

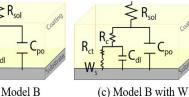
[2]. Photos from http://www.icorr.org/news/180/index.phtml

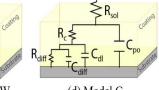
[3]. Photos from https://sites.google.com/site/metropolitanforensics/root-causes-andcontributing-factors-of-gas-and-liquid-pipeline-failures
[4]. Pan, H.; Ge, R.; Xingyu, W.; Jinhui, W.; Na, G.; Zhibin, L. Embedded Wireless Passive Sensor Networks for Health Monitoring of Welded Joints in Onshore Metallic Pipelines. In ASCE 2017 Pipelines; 2017.


1. Background

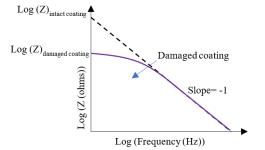
• Challenges:

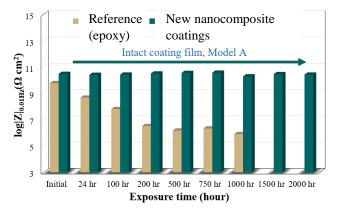

- Detection: Sensing and assessing corrosion-induced damage (early-stage, data process of collected data with high variances, e.g., noise interference for signals)
- Prevention/Mitigation: Conventional coating systems (low-damage tolerance, inaccessible for repair)




2. Proposed Concept

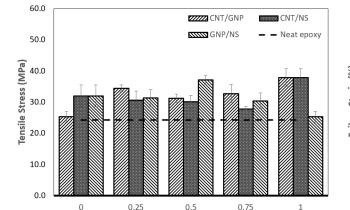
• Performance in terms of corrosion resistance:

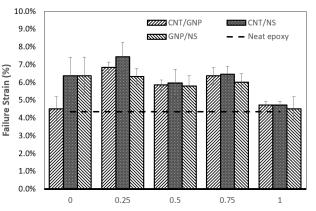


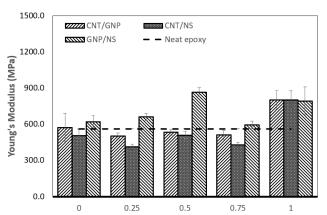


(d) Model C

Equivalent electrical circuit models at four stages: (a)-(d)

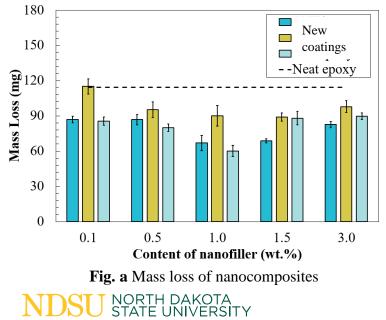





X

• Performance in terms of mechanical-tensile:

- Tensile strength
- Ultimate strain
- Young's modulus



• Performance in terms of mechanical-abrasion resistance:

- Mass loss after abrasion
- SEM image of abraded surface

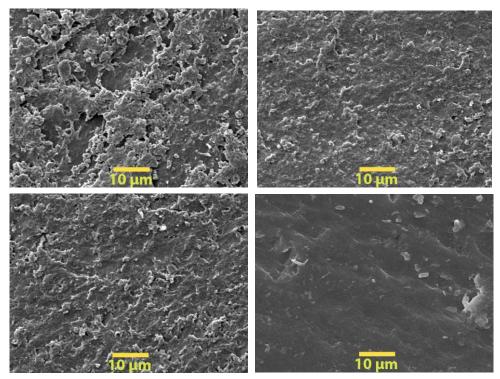
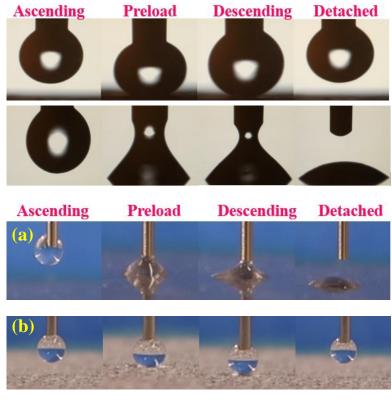


Fig. b SEM image of abraded surface



• Performance in terms of wettability:

Fig. a Picture of water (blue) and hexadecane (red) on new coating

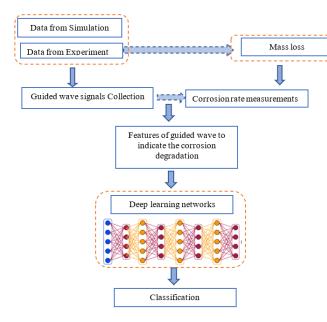
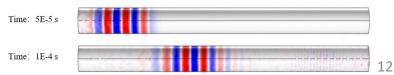
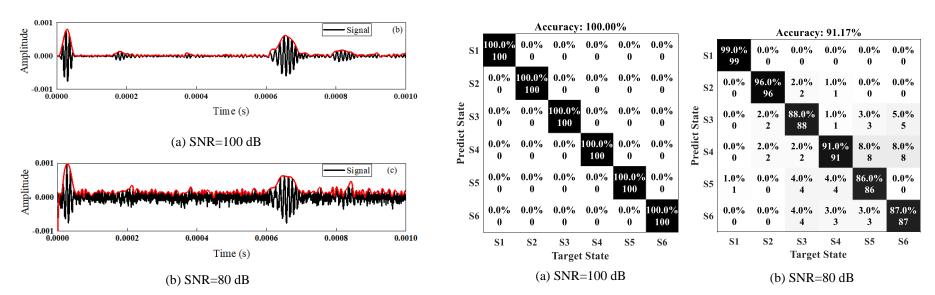

NDSU NORTH DAKOTA STATE UNIVERSITY

Fig. b Water droplet ascending and descending of (a) neat epoxy, (b) high-performance coating

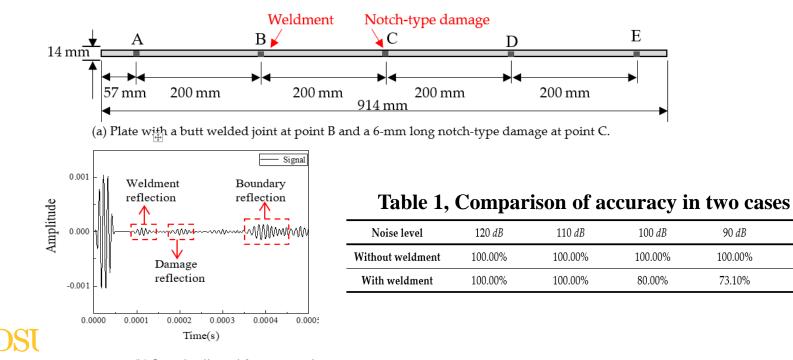
*Note: the information has patent protection in the United States.


• Machine learning guided damage detection:



NDSU NORTH DAKOTA STATE UNIVERSITY

• Machine learning guided damage detection:


-Noise interference

NDSU NORTH DAKOTA STATE UNIVERSITY

Machine learning guided damage detection: Ο

-Material discontinuity

80 dB

56.4%

65.71%

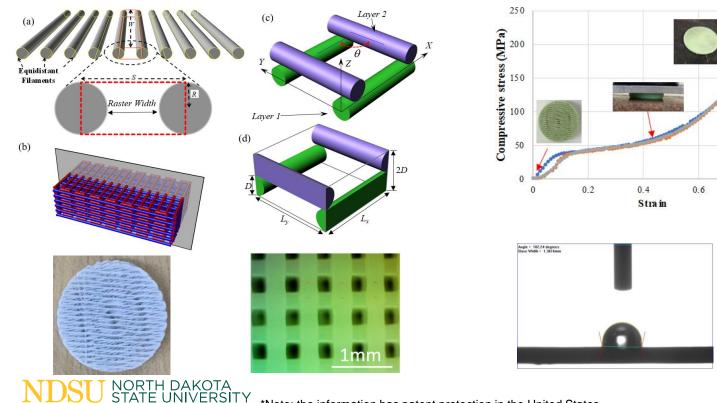
90 dB

100.00%

73.10%

• Machine learning guided damage detection:

-Shallow learning

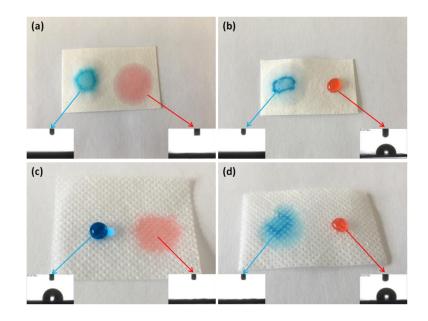

Method		Classification by physics-based			Classification by SVM			
Features		Amp	Frq	RMS	No feature selection		Feature selection	
					Physics based Features	All Features	Selected features	
Noise level	120dB	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
	110dB	97.71%	100.00%	98.86%	98.86%	98.86%	100.00%	
	100dB	81.14%	86.29%	84.00%	92.00%	84.00%	95.43%	
	90dB	44.00%	64.00%	72.00%	80.00%	72.00%	86.29%	
	80dB	19.43%	34.86%	39.43%	53.71%	39.43%	56.00%	

-Deep learning

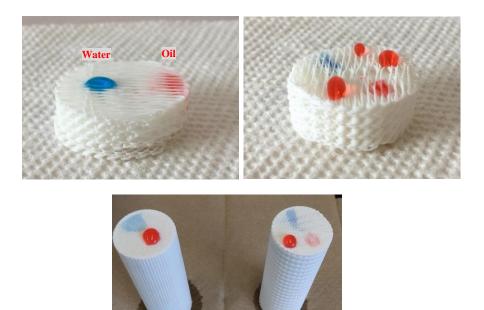
	100 dB	90 dB	80 dB	70 dB	60 dB
SVM_WT	98.5%	84.1%	57.3%	31.4%	26.5%
SVM_PH	100%	91.1%	64.9%	42.2%	26.5%
SVM_ALL	100%	100%	100%	84.00%	46.4%
SVM_FS	100%	100%	98.4%	77.9%	49.9%
CNN	100%	100%	100%	88.75%	62.5%
Resnet	100%	100%	100%	93.19%	67.69%

3. Case study—Removal of corrosive agents

• **3D printing lattices for water/oil separation:**

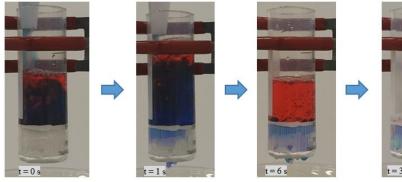

*Note: the information has patent protection in the United States.

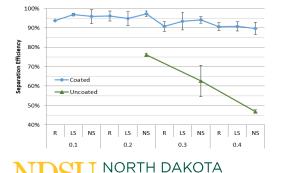
0.8


1

3. Case study—Removal of corrosive agents

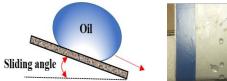
• 3D printing lattices for water/oil separation:


NORTH DAKOTA STATE UNIVERSITY

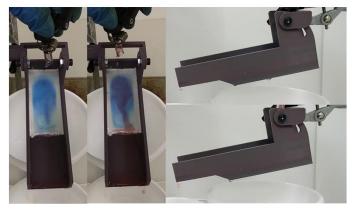

*Note: the information has patent protection in the United States.

3. Case study—*Removal of corrosive agents*

• 3D printing lattices for water/oil separation:



0.2-mm 3D printing LS type lattices



STATE UNIVERSITY

Sliding angle

*Note: the information has patent protection in the United States.

4. Summary

- The projects aimed to address corrosion issues experienced in pipelines from different perspectives.
- The proposed nanocomposite coatings with high damage tolerance as well as superior corrosion resistance as one solution for pipeline corrosion control and prevention
- The proposed machine learning guided framework for early-stage corrosion-induced damage detection for pipelines
- The proposed approach for removal of corrosive agents (e.g., water) for pipeline corrosion prevention

NDSU NORTH DAKOTA STATE UNIVERSITY

Zhibin.lin@ndsu.edu