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Fig. 2: Framework for Data Collection, Preparation, and Analysis.  
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Conclusions

➢ CatBoost Model predicts hydrogen embrittlement in 

steel with MAE: 7.32, MSE: 83.78, RMSE: 9.15 

(Training R2: 77.62%, Testing R2: 72.50%).

➢ Top Influencers: Pressure (47.4%) and UTS (19.2%) 

are critical, with elemental contributions from Iron, 

Phosphorus, and Silicon.

➢ Minor Elements: Mn, Al, and S have a combined, yet 

noteworthy impact.

➢ Application: Provides insights for material 

optimization, reducing hydrogen-induced risks.

Introduction

Methodology

➢ Natural gas transport favors low carbon and alloy 

pipelines for their cost-effectiveness, weldability, 

longevity, and strength.

➢ Repurposing gas pipelines for hydrogen: Address 

regulatory, safety, and HE challenges.

➢ Utilize ML to analyze hydrogen behavior in low 

carbon and low-alloy steels under high pressures.

➢ Evaluate several ML techniques to best predict HE's 

impact on mechanical properties, especially reduction 

in area.

➢ Provide guidance on material selection for hydrogen 

pipeline construction based on steel behavior in 

hydrogen environments.

➢ Addressing HE in Pipelines: 

Traditional mitigation strategies 

face adaptation challenges:

▪ Specialty Alloys: Efficient, 

yet require costly specialized 

production.

▪ Protective Coatings: Offer 

barriers, but come with 

expense and infrastructure 

modifications.

Objectives

➢ Evaluating steel's embrittlement is resource-

intensive; machine learning offers a more efficient, 

cost-effective solution.

Fig. 3: Comparison of correlations between Actual RA and Predicted RA of seven ML models

Fig. 4: Comparison of different features in predicting reduction of area using seven machine learning models

Performance Evaluation 

Fig. 5: Comparison of ML models performance based on (a) MAE, (b) MSE, (c) RMSE, and (d) R2 
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Fig. 1: A 3D rendering of a hydrogen 

pipeline (Tez, S., et. al (2022)).

Fig. 6: Sensitivity analysis of pressure (a), ultimate strength (b), and Fe parameters (c) in the CatBoost model

(a)

(b)

(c)


	Slide 1

