

Modeling of Necking Area Reduction of Carbon Steel in Hydrogen Environment Using Machine Learning Approach

- longevity, and strength.
- regulatory, safety, and HE challenges.
- face adaptation challenges:
 - Specialty Alloys: Efficient, production.
 - barriers, but come with expense and infrastructure modifications.

 \succ Evaluating steel's embrittlement is intensive; machine learning offers a more efficient, cost-effective solution.

- carbon and low-alloy steels under high pressures.
- in area.
- hydrogen environments.

Nayem Ahmed, Mohamed Aldaw, Ramadan Ahmed, Catalin Teodoriu Mewbourne School of Petroleum and Geological Engineering University of Oklahoma

ACKNOWLEDGMENTS: This material is based upon work supported by Pipeline and Hazardous Materials Safety Administration (PHMSA) of the U.S. Department of Transportation (DOT) under Grant No. 693JK32250004CAAP.

	Coefficient of Determination		MSE	RMSE	MAE	Pressure	Su	Fe	с	Si	S	Р	AI	Mn	HT*
	Training R ²	Test R ²													
	0.77	0.70	90.18	9.50	7.26	1	2	4	5	3	6	7	10	9	8
	0.73	0.69	95.31	9.76	7.45	1	2	4	7	8	9	3	10	5	6
st	0.78	0.74	78.05	8.83	7.07	1	5	6	9	2	3	4	10	7	8
	0.75	0.65	108.04	10.39	8.18	1	2	4	7	10	9	3	5	8	6
ost	0.75	0.71	88.14	9.38	7.04	1	2	4	6	3	5	7	10	9	8
	0.74	0.71	88.03	9.38	7.29	1	2	3	6	4	7	5	10	9	8
ost	0.78	0.73	83.78	9.15	7.32	1	2	3	6	5	8	4	10	9	7
е	0.76	0.70	90.07	9.48	7.38	1.0	2.4	4.0	6.6	5.0	6.7	4.7	9.3	8.0	7.3

