Natural Gas Pipeline

3-27-12 Public Event Improving Pipeline Leak Detection Effectiveness

Panel 4
Natural Gas Leak Detection System
Capabilities and Research

Natural Gas Pipeline

- Focus Today Mainly on Transmission
 - Leveraging issues
 - Rupture vs leak remote identification
 - Internal vs external detection
 - More likely to have SCADA computer
 - Gas rupture can put more hydrocarbon tonnage into a neighborhood!
 - Remote rupture detection much harder than it looks!
- Distribution much different

Internal Monitoring Systems

- Compressibility makes identifying via control center challenging
- Unreliable approaches
 - Mass balance
 - Pressure drop
 - Rate of pressure drop (maybe)
- More reliable approaches
 - Major flow change quicker possible indicator
 - More likely a combination of indicators
 - Complex transmission systems much more challenging
- High probability to overload/distract control center
 - More false alarms = operator overload!
 - Computer logic working for operator or other way around?
 - Field confirmation of possible rupture usually required

External Monitoring Systems

- Types of technical approaches
 - Sound/frequency
 - Hydrocarbon detection
 - Various promising fiber optic approaches
- Challenges
 - Limited pipeline length field application
 - Signal to noise filtering ratio can be problematic
 - Too many false alarms
 - Shielding by pipeline
- Most likely to be used in highly sensitive areas

Aerial Leak Monitoring

- For both transmission and distribution system leak monitoring
 - Field application now for several years
 - Usually laser technology via plane/helicopter/vehicle
 - Covers a lot of ground quickly
 - Periodic measurement not real time
 - Key is in the analysis / presentation software
 - Leaks aren't always pipeline related