Panel 3 - Valve Capabilities, Limitations and Research 3-28-12 Public Event Understanding the Application of Pipeline Automatic/Remote Control Valves ### Gas or Liquid Pipeline Valving - * Everyone is a "valve" expert - * Moving valves from "maintenance" to "safety" role is a big change! - * "Safeties" demand special process attention - * Paradigm shift required in industry - * Avoid the scare "propaganda" tactics - * Suggest try following the laws of science - * Control rooms getting more complex - * Highest potential for more emergency response delay - * Safety isn't free #### Phases of Gas or Liquid Pipeline Rupture* Phase 1, 2, & 3 Determined by Pipsline Operator Phase 4 Set by the Laws of Science An " ineffecient" pipeline organization can cause phase 1, 2, or 5 times to easily exceed phase 4 times. ^{*} From Data in GRI-95/0101 Remote and Automatic Main Line Valve Technology Assessment # Liquid Pipeline Valving - * Manual vs Remote (RCV) vs Automatic (ASV) - * Automation shortens rupture release tonnage - Little impact on leaks - * Quicker closure needed in many situations - * Especially for large diameter pipelines ## Liquid Pipeline Valving - * Terrain Hydraulic Profile - * Plays a major role in valve placement/automation - * Gravity moves liquids very quickly - * Valve automation should not create a surge risk! - * Demands special well-documented safety evaluation - * Bellingham 1999 tragedy very poor "valving" decisions - * New pipeline operator developed a more prudent valve safety design - * See levels of safety slide No. 10 ## Gas Transmission Valving - * Emergency Response Priority on Rupture! - * Extremely high heat flux events, especially in early stages - * Cut off gas supply as quickly as possible - * Especially for large diameter pipelines - * California after San Bruno learning curve - * Adding automated valves - * Valve diameter, spacing, and whether RCV or ASV? - * Setting 30 minute goal for triage access - * See levels of safety slide No. 10 to prevent false closure ### Gas Transmission Valving - * Manual vs Remote (RCV) vs Automatic (ASV) - * Shorten rupture gas release tonnage and time - * On large diameter pipelines - * Getting to and closing large manual valves can take more time than isolation blowdown (phase 4) - * RCVs/ASVs cut serious time out of large manual valve shutoff - * Forget Blowdown Valves - * = illusion of safety - * Can't negate the laws of science #### Gas Rupture Isolation Blowdown Times vs Pipe Size and Valve Spacing* Isolation blowdown = time to vent after valve closed * From data in GRI-95/0101 Remote and Automatic Main Line Valve Technology Assessment Accufacts Inc. 3-26-12 # Gas Transmission Valving - * RSVs or ASVs can seriously reduce gas venting tonnage - * Especially for large diameter pipelines (> 24-inch) & valves spaced up to class 3 (max. 8 miles) - * RCVs dependent on SCADA monitoring/rupture detection capability and Control Center operator! - * ASV's take Control Room operator out of the loop, reducing release time. - * RSV vs ASV decision driven by "the rupture is real" decision point - * Via Control Room Operator = RCV - * Need alert, trained, knowledgeable operator getting right information - * Via Automatic Design = ASV - Prudently designed safety (see slide 10) - * Properly designed ASVs are definitely much faster #### Level of Safeties for Liquid/Gas RCVs/ASVs - To Avoid RSV or ASV Accidental Closure - * "Smart Valve" Design Approach - * Conventional industry approach very inappropriate - * Two levels of independent signals confirming need for closure - * Not redundancy, but independency - * Not pressure - * Design for Control Room to stop closure - * Recommend "HAZOP" team design approach - Failsafe approach in either RCV or ASV design - * Never design to move problems in facilities to mainline!