

Pipeline & Hazardous Materials Safety Administration National Pipeline Mapping System – Public Meeting November 17, 2014

Scott Currier

TransCanada
Representing INGAA

Gas Pipeline GIS Concepts

Spatial Accuracy Error is Cumulative

- Identification of centerline of pipe
- Spatial location methods
 - Excavation + Professional Survey
 - Line probing + Professional Survey
 - Inertial Measurement Unit (IMU) during Inline Inspection (ILI)
 - Photographic image placement (pipeline scar/markers)
- Placement on Base Maps
 - Projection Errors (Vertical Elevation; Distortion)
 - Range of quality

Gas Pipeline Spatial Accuracy

- Method (by increasing accuracy)
 - Survey Notebooks
 - Photo Image Matching
 - GPS Appurtances
 - GPS Pipeline
 - Inline Inspection (ILI) with Inertial Measurement Unit (IMU)
 - Direct Assessment(DA)
 with Professional Survey

INGZÁ

Present Status of INGAA Members

- All members have working GIS systems that are constantly evolving
- Spatial coordinates submitted to NPMS are the same as the existing member's GIS systems
- Members are conservative in reporting pipeline segment spatial accuracy to NPMS
- Spatial accuracy of pipeline centerline varies by
 - Pipeline Company
 - Pipeline Segment
- Attribute designations vary by INGAA member

Present Status of Emergency Responder (ER) Information Needs

- INGAA conducted Survey through Paradigm Inc.
 - March 2014, ~1000 ER respondents across U.S.
 - Preferred digital or paper map with photo background provided by <u>pipeline operators</u>
 - Most useful information needed by ER
 - Location
 - Commodity information
 - Emergency Contact Information
 - Present positional accuracy* is not compelling issue
 - 68% of respondents said they did not need improvement
 - Remaining respondents were happy with 100 foot positional accuracy

INGAA Survey and Analysis to Implement PHMSA Information Request

- Survey results represents 132,000 mile with all respondents having GIS system (11,000 miles within HCA or Class 3,4)
- Detailed survey (38 categories with 4 part questions)
- Availability of 31 linear attributes per PHMSA format and accuracy requirements
 - Ranges from 0 to 3,064 miles per attribute within HCA or Class 3,4 (in accordance with PHMSA accuracy and format)
 - Ranges from 0 to 28,000 miles per attribute within other areas (in accordance with PHMSA accuracy and format)

Pipeline Centerline Accuracy within GIS System (INGAA Survey Results)

Assumptions for INGAA Estimate

- 5' Centerline and linear attribute accuracy in HCA and Class 3,4
- 50' Centerline and linear attribute accuracy in Non-HCA Class 1,2
- Strict interpretation of PHMSA proposed information collection
- Requirement to massage data into PHMSA allowed format
- Applies to mainlines and laterals (does not include compressor stations, meter stations, or other ancillary facilities)

INGAA Cost Analysis of PHMSA Information Request

- Willbros commissioned to do INGAA cost estimate of IR
 - Reviewed GIS and record management practices of 4 major INGAA members
 - Assessed major new technologies and processes for spatial and linear pipeline data
 - Cost per mile to gather and integrate data
 - \$4,510 per mile for 50' accuracy
 - \$11,580 per mile for 5' accuracy
 - Total Cost Estimate \$820,000,000 for INGAA membership
 - Estimate does not include
 - Member GIS system upgrades
 - PHMSA submittal process
 - PHMSA implementation to accommodate submittal.

Questions?