Pipeline Research Council International

Greenhouse Gas Emissions Reduction: *PRCI Strategic Research Priority Program*

LEADING PIPELINE RESEARCH

Tom Lumadue GHG SRP Champion PHMSA R&D Forum December 1, 2021

Our Mission

To collaboratively deliver relevant and innovative applied research to continually improve the global energy pipeline systems.

Background

- Increased focus on reducing greenhouse gas (GHG) emissions is increasingly becoming a social and, in turn, a business driver.
- Direct combustion of hydrocarbons is by far the highest source of greenhouse gases
- Methane emissions is the second highest source
 - Relatively small reductions in methane have a larger net impact in greenhouse emissions as it is a more potent GHG than CO2

2017 US Methane Emissions, By Source

Background

- The pipeline industry should tackle reduction in GHG emissions through
 - Reduced combustion/efficiency optimization
 - Reduced methane emissions

Impact to the industry

- GHG is a global issue
- Impacts both gas and liquid operators but has a larger impact to the gas industry as the equipment used to compress gas utilizes natural gas as a fuel and has methane emissions.
- The entire pipeline infrastructure is at risk if the social drive is to eliminate all fossil fuels
 - Exception if there is a transition to renewable methane and/or hydrogen
 - Even if the impact is limited to just methane slip on two-stroke compressor engines, the replacement costs are estimated to be > \$5B
- Increasingly, companies are required to show to their stockholders how they are reducing their GHG emissions
- Regulatory drivers to reduce methane emissions

GHG Strategic Research Priority

- What will it do & accomplish?
 - Provide PRCI members and the energy pipeline industry with GHG solutions to implement and reduce their carbon footprint
 - Provide a roadmap of research projects to significantly reduce GHG emissions from pipeline transmission

CO2e Economic Analysis Tool

A standardized basis to evaluate multiple technical approaches to assess relative cost (\$/CO2e) on a NPV basis was created.

- A tool to help operators prioritize their efforts to reduce GHG emissions to target the most cost-effective issues first.
- Will also be used by the GHG SRP program to help prioritize research efforts to reduce GHG emissions.

Summary Forecast for the period ending			10 years after initial cash flow. Return To Setup Page												
Overview of Emissions and	Levies	After 1 Year							ר ר	Energy ar	nd Emis	sions	Per Sou	rce, Pe	r Perio
Baseline gener		generates theoretica	enerates theoretical emissions of		tonnes/year	of CO2e and attracts	\$6,461,329	in expenses.	?	 Applies the c 	configured fue	el rate, pei	riod, populati	ion, efficien	cy and co
Alternative 1		changes CO2e emissions by		-2.6%		and changing levies by		-2.6%	?	For Natural (Gas and NGL	, 'Energy	In' is based o	on	LHV
Alternative 2		changes CO2e emi	ssions by	-5.1%		and changing levies by		-5.1%	?				_		
										B	aseline				
Overview After 10 Year Period		Alternative 1	Alternative 2		Template # 1		Sunday, Au	gust 8, 2021	7	Source	Period	Ener	gy In	Energ	y Out
Net Present Value	\$	\$620,525	\$1,657,848		Applying load pro	files for gas turbine engines				Engine A	day	3770.6	MMBTU	403.3	MWh
Internal Rate of Return	%	15%	22%							Engine B	day	3670.0	MMBTU	403.3	MWh
Levy & Commodity \$ Reduction	\$	\$2,140,192	\$4,170,503								day	0.0	MMBTU	0.0	MWh
CO2e Reduction	tonne	42539	82894							_	day	0.0	MMBTU	0.0	MWh
Cost Effectiveness \$NPV per	tonne	\$15	\$20							_	day	0.0	MMBTU	0.0	MWh
										_	hour	0.0	MMBTU	0.0	MWh
			Net Pres	ent Value	1					-	hour	0.0	MMBTU	0.0	kWh
\$6,000,000											hour	0.0	MMBTU	0.0	MWh
										_	hour	0.0	MMBTU	0.0	MWh
\$5,000,000												not applicable	e		
															total
\$4,000,000							-			Alte	rnative	1			
\$3,000,000										Source	Period	Ener	gy In	Enerc	y Out
										Engine A	day	3670.0	MMBTU	403.3	MWh
2,000,000					-					Engine B	day	3574.7	MMBTU	403.3	MWh
			-								day	0.0	MMBTU	0.0	MWh
1,000,000											day	0.0	MMBTU	0.0	MWh
				_						-	day	0.0	MMBTU	0.0	MWh
so			-	-							hour	0.0	MMBTU	0.0	MWb
											hour	0.0	MMBTU	0.0	MWh
1,000,000											hour	0.0	MMBTU	0.0	MWh
										_			not applicable	•	

Active GHG Projects

Fuel Reforming and Segregation as an Alternative for Compressor Fuel (CPS-14-07)

- Develop technologies to facilitate reforming natural gas to produce hydrogen and other components.
- This would eliminate all CO2e emissions from these engines.

Improvements in Facility Efficiency (CPS-17-07)

• White paper study to identify technologies that could minimize emissions through facility efficiency enhancements.

Reciprocating Engine Exhaust Methane Slip Reduction (CPS-17-08)

- This multi-year effort will evaluate retrofittable hardware and control methods to reduce misfire/late combustion and minimize fuel trapped in portions of the engine where flame quenching is likely.
- The effort will also evaluate hardware and controls that enhance combustion to help assure complete combustion of the engine fuel.

Active GHG Projects, cont.

Continuous Monitoring and Diagnostics for Facility Efficiency (CPS-14-06)

• Project to determine near real-time identification of equipment that has undergone mechanical degradation such that it is operating below its expected efficiency.

Methods to reduce pipeline blowdowns to effectuate repairs/inspections (MATR-3-15)

• White paper study to assess technologies that would facilitate pipeline repairs without the need to blowdown the pipeline.

Methane Leak Detection and Quantification (PL-1-08)

• White paper study to provide research guidance on technologies that can be used to detect and quantify the rate of natural gas leaks.

Flow Sensors for Continuous Monitoring and Diagnostics for Equipment Efficiency Monitoring (MEAS-5-28)

• An assessment of flow sensors that can be retrofitted to gas compressors and liquid pumps.

New Projects Planned for 2022

Alternate Pipeline Repair Methods

• Initial development and enhancement of in situ pipeline repair methods.

Evaluate In Situ Valve Repair Techniques

• Paper study to evaluate options to repair leaky isolation valves without removal from service and/or detection/monitoring methods.

Low-cost Instruments to Detect/Quantify Leaking Seals, Packing, or Dump Valves

• White paper to assess the feasibility/reliability of low-cost instruments to detect leaking components.

High Flow Sampler Replacement

• Assist in the development and testing of a high flow sampler (or alternate technology) for the quantification of moderate to large leaks.