

Pipeline and Hazardous Materials Safety Administration

www.dot.gov

Pipeline and Hazardous Materials Safety Administration

Maximum Allowable Operating Pressure for Class Locations

Ted Willke Deputy Associate Administrator For Pipeline Safety

March 21, 2006

Pipeline and Hazardous Materials Safety Administration

Enhanced Safety from Technology

- Tougher Pipe Materials
- Improved Pipe Fabrication
- Improved Construction Methods
 - ° Joining
 - Bedding in the Ditch
- Improved Testing of New Pipelines
- Improved Pipeline Inspection Technologies
- Better Practices-Integrity Management

Pipeline and Hazardous Materials Safety Administration

Question for Meeting

Should PHMSA allow natural gas transmission lines to operate at Maximum Allowable Operating Pressures equivalent to 80% of Specified Minimum Yield Strength in Class 1 locations?

Pipeline and Hazardous Materials Safety Administration

The Challenge

- Pipeline Crossing the U.S. Canadian Border
 - $^\circ~$ U.S. MAOP at 72 % of SMYS
 - ° Canada MAOP at 80% of SMYS
- Both Standards Based on ASME B31.8
 ^o Different Historical Trajectories
- Rationale for Continuing Differences?

Pipeline and Hazardous Materials Safety Administration

Alaska Gas Pipeline Project

• Route

- North Slope of Alaska
- ° Through Canada
- ° Into Lower 48
- Economics Critical to Decisions Economies of Scale
 - Larger Size
 - Higher Pressures
 - Higher Design Factors

Pipeline and Hazardous Materials Safety Administration

Pipelines That Could Be Affected by Higher MAOP

- Alaska Gas Pipeline Project
- Cross-Border Pipelines
- New Pipelines
- Existing Pipelines
 - Built with State-of-the-Art
 - Appropriately Tested
 - Well Maintained

*Some pipelines already operate above 72% SMYS in the Lower 48 (Grandfathered or Waivers)

Pipeline and Hazardous Materials Safety Administration

Some Considerations

- Pipe Toughness
 - Resistance to Crack Initiation
 - Resistance to Crack Propagation
- Pipe Robustness
 - ° Resistance to Mechanical Damage
- Testing and Assessments
 - Hydrostatic Testing
 - Internal Inspections
- Corrosion Protection
- Consequences of Failure
- Long-term Commitment to Safety
 - Operations and Maintenance

Pipeline and Hazardous Materials Safety Administration

Some Questions

- Can safety be maintained at the higher stress levels?
- Can we justify the differences in international standards?
- Are the benefits of higher throughput and lower fuel costs achievable without compromising safety?
- Has technology, fabrication and construction, testing, and maintenance improved to assure safety?
- Are there additional considerations?