

Geological storage of hydrogen as a large-scale energy storage solution

Shadi Salahshoor Principal Engineer, GTI

80 Year History of Turning Raw Technology into Practical Energy Solutions

400+

EMPLOYEES

World-class piloting facilities headquartered in Chicago area

Collaborative Organizations and Programs

Working with utilities to address critical challenges

OTD Members

Serving 50 million gas consumers in the U.S., Canada and France

Growing demand for hydrogen

Global hydrogen demand by sector in the Sustainable Development Scenario, 2019-2070

IEA. All Rights Reserved

Low-Carbon, Low-Cost Hydrogen Energy Systems

Source: IEA Data & Statistics

https://www.gti.energy/hydrogen-technology-center/

The need for storage

Source: Road Map to a US Hydrogen Economy ushydrogenstudy.org

Hydrogen storage bridges gaps in supply and demand

Demand Generation Means of balancing H₂ storage capacity Battery capacity Time 1 Demand-side load balancing, etc.

Curtailment of extreme peaks Hydrogen used for Long-term storage to balance across

- weeks and seasons Transfer of renewable energy to other
- sectors
- Transfer to other regions where electricity transmission is not sufficient/ not cost efficient

Batteries and power balancing1: shortterm storage to balance within hour/day

Source: Hydrogen Council, 2017

Electricity supply and demand, TWh

Geological storage

- Salt caverns
- Depleted reservoirs
- Deep Saline aquifers
- Mines & hard rock caverns

Source: EIA

Hydrogen storage options

Geological storage:

- salt caverns preferred method to date – efficiency, purity, high pressure operation
- Aquifers and depleted oil fields require further research

Operations Technology Development

Geological storage of hydrogen- Experience

	Туре	Gas (%)	p/T	Volume (m ³)	Capacity (sm ³)	Depth (m)	Start-up	Status
Germany								
Ketzin	Aquifer	CO2 62 % H2	-	-	-	200-250	-	closed
Kiel	Salt cavern	62 % H ₂	80-100 bar	32,000	-	-	-	operating with natural gas
United King	dom							guo
Teesside	Salt cavern	95 % H ₂ 3-4 % CO ₂	50 bar	-	1.000.000	400	1959	operating
USA								
Spindletop	Salt cavern	95 % H ₂	-	-	-	-	-	operating
Clemens Dome	Salt cavern	95 % H ₂	70-135 bar	580,000	30.000.000	850	1980s	operating
Moss Bluff	Salt cavern	-	-	-	-	-	-	operating
France								
Beynes	Aquifer	50 % H ₂		-	385.000.000	430	1956 - 1972	operating with natural
Czech Repu	ublic							945
Lobodice	Aquifer	50 % H ₂ 25 % CH ₄	90 bar / 34°C			430	1965	operating
Argentina								
Diadema (Hychico)	Depleted gas reservoir	10 % H ₂	10 bar / 50°C	-	-	600	2009	-
Austria								
Underground Sun Storage	Depleted gas reservoir	10% H2	78 bar / 40 °C		1.150.000	1000	2015 - 2017	operating

gti

Natural Gas storage- The United States

Comparison Natural Gas Storage Experience

Advantages	Disadvantages						
Depleted Reservoirs							
Use of existing reservoir	Low deliverability per well						
Geographical availability, knowledge of reservoir (geology, performance)	Maximum (0.5–1)% daily withdrawal of total capacity						
Low investment costs for conversion	Maximum 1–2 turnovers per year. low deliverability and injectivity						
Possibility of reusing existing wells	High percentage of cushion gas						
Aquifer							
Use of existing reservoirs	Need extensive, costly, and time-consuming exploration phase						
No hydrocarbon residues in reservoir to cause contamination	Low deliverability per well						
	Maximum (0.5–1)% daily withdrawal of total capacity						
	Maximum 1–2 turnovers per year						
	Low deliverability and injectivity						
	High percentage of cushion gas						
Salt Caverns							
High safety due to only one well per storage cavern	Need for exploration phase						
Low geological risk	Limited geography, limited volume						
High flexibility, maximum 10–12 turnovers per year	Several years construction time						
High deliverability and injectivity/high rates	Need to dispose large quantities of salt brine						
Low percentage of cushion gas							
No reactions between storage gas and rock salt							

Research needs

- Caprock sealing and containments
- Geochemical reactions
- Biological reactions
- Multi-phase flow/Geomechanical

Site Screening Workflow

Source: Heinemann et al., 2021

gti

Ongoing Research and Development

- 1. Select best environments with undesirable conditions for microbial activities and analyze injected fluids
- 2. Regular monitoring of changes in microbial composition
- 3. Microbial inhibitory compounds

OTD Operations Technology Development

- Metabolic inhibitors (nitrate application)
- Biocides (needs to be screened based on reservoir characteristics)

Distribution of microbial communities in different gas storage wells: source GTI's OTD report (22227)

Geochemical analysis

- Gas analysis
- Hydrocarbon analysis
- Fluid/wet chemistry
- Fuels analysis

Biological analysis

- qPCR
- 16S sequencing
- Metagenome sequencing
- Microscopic counting

Biocorrosion analysis

- Bioreactors(high temperature and pressure)
- Coupon weight loss
- Microscopic analysis
- Biofilm analysis

Non-salt storage pilot

The energy storage and production system provides the platform to further test, perfect and integrate the components for larger commercial deployment in support of zerocarbon, centralized power production

ZERO CARBON POWER • CLEAN HYDROGEN PRODUCTION • UTILIZING LOCAL GEOLOGY

Illinois State Geological Survey

Integrated Hydrogen Energy Storage System (IHESS)

Underground H2

Storage

- 1. Leverage existing/planned H2 production, distribution and power generation assets
- 2. Create carbon intensity optimization model with inputs from energy demand, power prices, and H2 pricing
- 3. Blend NG and H2 to deliver low-carbon power
- 4. Design H2 storage and delivery infrastructure for power plant needs for all market conditions.

Technology Development

LAKE CHARLES HOUSTON BAYTOWN ARTHUR S.E. Louisiana TEXAS BATON ROUGE CITY GALVESTON EISMAR NEW ORLEANS FREEPORT GARYVILLE ST CHARLES Praxair pipelines ty H₂ Storage Cavern H₂ Production Unit * New Project Air Separation Unit Pipeline Extension

gu

Concluding remarks

- ✓ How can underground gas storage reservoirs adapt or evolve to meet 2050 Net Zero goals?
- ✓ How could existing infrastructure be retrofitted to enable the energy transition at low costs?
 - Fundamental research
 - □ Capabilities establishment
 - Recommended practices
 - □ Field demonstrations

Thank you!

Contact

Shadi Salahshoor

ssalahshoor@gti.energy

847-768-0979

