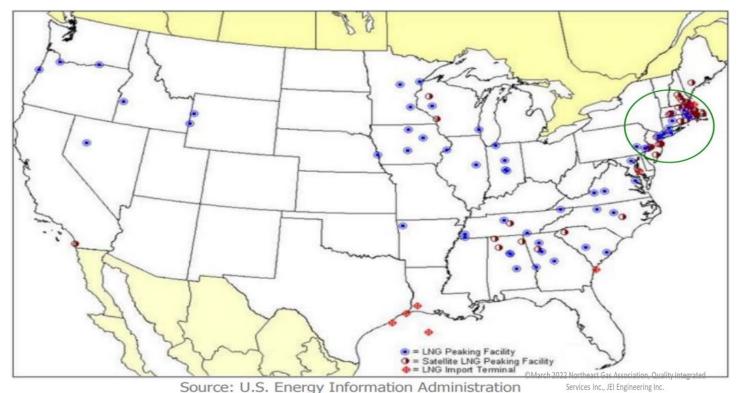




IMPACTS OF H2-ENRICHED NG FOR FEEDSTOCK OF LNG LIQUEFACTION PHMSA LNG WORKSHOP NOVEMBER 15, 2022 SUZANNE HARTWELL NYSEARCH PROJECT MANAGER STEVE VITALE PH.D, P.E. QUALITY INTEGRATED SERVICES INC.

NYSEARCH


- NYSEARCH is a sub-organization of NGA that conducts voluntary RD&D on behalf of 20+ utilities located in the United States and Canada
- Serving the gas utility industry by identifying and executing research programs to advance the safety, integrity, and efficiency of the gas utility
- Voluntary-based funding
- High leverage of R&D dollar
- Unique access to information on state-of-the-art technologies and research in an open setting with other gas utilities that experience similar, if not the same, challenges in operations

BACKGROUND

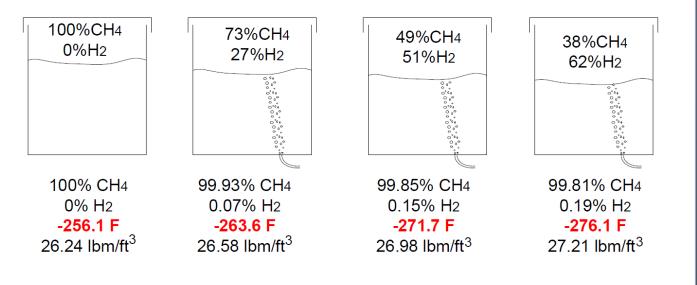
- November 2021, NGA conducted an H2 Enriched NG Technical Workshop
 - NGA, AGA, NYSEARCH, and other companies who attended the workshop endorsed the idea to investigate the challenges and mitigation techniques should NG liquefaction pipelines include H2

NYSEARCH MULTI-PHASE PROGRAM

Phase I: HENG LNG Feedstock Implications Study

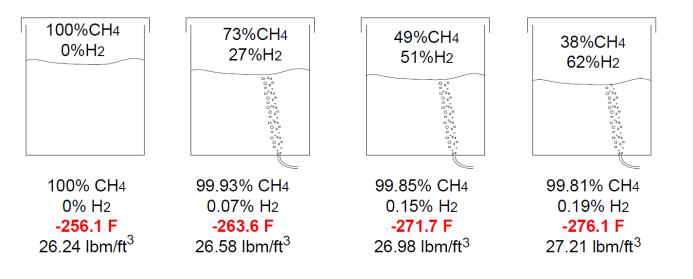
- Develop an inventory of materials from the participating funders
- Detailed analysis of four participating funder facilities
- Identify any additional needs for further research

Phase II: HENG Feedstock Pretreatment Mitigation Measure Options to Enable Facility Operations


• Consider a range of pre-treatment, recovery, and reinjection options

THINGS ARE CHANGING IN OUR INDUSTRY

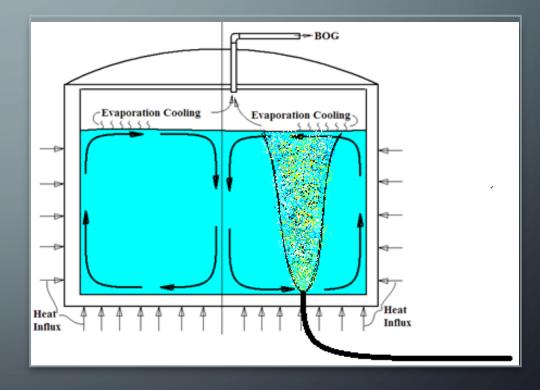
- The likelihood of Hydrogen Enriched Natural gas (HENG) coming into the natural gas system is high
- Hydrogen "for the most part" stays a vapor as it passes through a liquefaction plant, but it does behave oddly with phase changes related to pressure and temperature
- During the liquefaction process at higher pressures H2 does see phase changes, which can significantly affect liquefaction capacity and ability to liquefy (CB&I article October 22 "LNG Industry")
- Our findings involve the impact of very small concentrations of H2 that does liquefy into the LNG inventory if not removed from the LHENG process
 - Hydrogen will most likely need to be removed from the feed gas before liquefaction (GasTech AP presentation 9/29/22)


Well insulated tank at 16.5 paia and hydrogen bubbled through the liqiud methane Using a combination of REFPROP and HYSYS data

THERMODYNAMIC MODELS WITH LIQUID METHANE

- Consider what happens when we bubble pure hydrogen through an existing inventory of LM
- H2 concentration dominates temperature and temperature (not H2 concentration) dominates LM density

Well insulated tank at 16.5 paia and hydrogen bubbled through the liqiud methane Using a combination of REFPROP and HYSYS data



HYDROGEN WITH LIQUID NATURAL GAS

- Consider what happens when we bubble pure hydrogen through an existing inventory of LNG
- Where did the cooling come from?
 "Forced" additional CH4 evaporation
- The methane vapor pressure above the liquid becomes much lower as hydrogen is added

DENSITY OF THE LNG, STRATIFICATION, AND OUT-GASSING

- Indeterminant
 - When the bubbles are methane, they would condense in the subcooled LM at the bottom of the tank
 - When the bubbles are hydrogen, they do not condense but rise through the LM

8

ASSUME WE CAN GET THE LIQUEFIER TO MAKE COLD HENG BEFORE THE JT VALVE, THEN WHAT HAPPENS ACROSS THE JT VALVE?

- HYSYS was used to flash LM and LNG across a JT valve from 400 psia to tank pressure.
- We know LNG production would be reduced due to:
 - Reduced residence time in heat exchangers
 - Cooling of vapor that refuses to liquefy that cold vapor enters and then leaves the tank
 - Heat transfer to a vapor is much less than to a liquid
- Presume these issues are overcome and we have the refrigerated Liq/Vap HENG upstream of the JT valve. What happens after the JT valve?

9

HENG ACROSS A JT VALVE

Run Name	Stream 1					Stream 2					
	Psia	T (F)	Mth	H2	Туре	Psia	Т	Mth vap	H2 vap	Mth liq	H2 liq
Methane and Hydrogen Only											
1% H ₂ , C1, 15.5	400	-258	99.00%	1.00%	М/Н	15.5	-264.2	75.06	24.94%	99.94%	0.06%
1% H ₂ , C1, 16.5	400	-258	98.96%	1.04%	м/н	16.5	-263.6	72.76%	27.24%	99.93%	0.07%
5% H ₂ , C1	400	-258	95.00%	5.00%	м/н	16.5	-271.7	48.70%	51.30%	99.85%	0.15%
10% H ₂ , C1, 14.5	400	-258	90.00%	10.00%	м/н	14.5	-277.6	40.17%	59.83%	99.83%	0.17%
10% H ₂ , C1, 15.5	400	-258	90.00%	10.00%	м/н	15.5	-276.8	39.30%	60.70%	99.82%	0.18%
10% H ₂ , C1	400	-258	90.00%	10.00%	м/н	16.5	-276.1	38.47%	61.53%	99.81%	0.19%
20% H ₂ , C1	400	-258	80.00%	20.00%	м/н	16.5	-281.4	28.51%	71.49%	99.76%	0.24%
LNG including Methane, Ethane, Propane, Nitrogen and Hydrogen											
1% H ₂ , LNG	400	-229	94.30%	1.00%	LNG	16	-258.6	90.13%	7.62%	94.92%	0.02%
2% H ₂ , LNG	400	-229	93.30%	2.00%	LNG	16	-260.2	84.04%	13.87%	94.83%	0.04%
3%, H ₂ , LNG	400	-229	92.30%	3.00%	LNG	16	-261.6	78.80%	19.16%	94.75%	0.06%
4% H ₂ , LNG	400	-229	91.30%	4.00%	LNG	16	-262.8	74.42%	23.74%	94.66%	0.07%
5% H ₂ , LNG	400	-229	90.30%	5.00%	LNG	16	-263.9	70.81%	27.46%	94.57%	0.80%
6% H ₂ , LNG	400	-229	89.30%	6.00%	LNG	16	-264.8	67.73%	30.64%	94.47%	0.08%
7%, H ₂ , LNG	400	-229	88.30%	7.00%	LNG	16	-265.7	65.00%	33.45%	94.38%	0.11%
8%, H ₂ , LNG	400	-229	87.30%	8.00%	LNG	16	-266.4	62.57%	35.96%	94.28%	0.12%
9%, H ₂ , LNG	400	-229	86.30%	9.00%	LNG	16	-267.2	60.37%	38.23%	94.18%	0.12%
10% H ₂ , LNG	400	-229	85.30%	10.00%	LNG	16	-267.8	58.37%	40.28%	94.08%	0.13%
20% H ₂ , LNG	400	-229	75.30%	20.00%	LNG	16	-272.5	46.12%	52.92%	94.11%	0.19%

10

SUMMARY OF FINDINGS

- A full 1 BCF tank contains \sim 42,500,000 lbm of LM
- Amount of heat needed to lower 42,500,000 lbm of LM 5°F would be 177,000,000 Btu (Cp = 0.835 Btu/lbm °F).
- All the cooling is from the evaporation of methane forced by the lower vapor pressure of methane.
 - Fick's Law, Daltons Law, LaChatelier's principle
- The amount of heat leak that comes into the tank each day is approximately 42,500,000 lbm x 0.005 X 218 Btu/lbm = 4,600,000 Btu/day.
 - After a long liquefaction run it would take ~ 50 days for BOG to normalize 177,000,000 Btu/4,600,000 Btu/day = 40 -50 days
- The amount of cooling provided by a 5,000,000 scfd liquefier is:
 - 5,000,000 scfd x .04246 lbm/scf x 356 Btu/lbm = ~ 75,800,000 Btu of heat removed per day.

CHALLENGING OPPORTUNITIES IDENTIFIED DURING THE PROJECT

• Can a laboratory or in-field experiment be made to validate these software outputs?

- Further analysis of the materials of construction impacts of hydrogen in legacy liquefaction facilities and assessing material failure risks with feedstock containing hydrogen.
- What equation of state thermodynamic modeling software is available to examine natural gas/hydrogen blends? (non-convergence/accuracy of REFPROP and HYSYS)

• What is the preferred management method of the off-gas that contains hydrogen?

THANK YOU

Suzanne Hartwell, shartwell@northeastgas.org

Steve Vitale, svitale@ptd.net