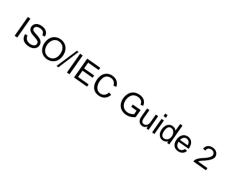
NACE Standards on Pipeline Internal Corrosion


Oliver Moghissi oliver.moghissi@dnv.com

What is a Standard?

A document

- established by consensus
- approved by recognized body

- that provides, for common and repeated use,
- rules, guidelines, or characteristics for activities or their results,
- aimed at achieving the optimum degree of order...

Benefits of Standards

- Pipeline operators
 - Cost reduction
 - Enhanced safety & reliability
 - Interoperability
 - Regulatory compliance
 - Reduced liability exposure

Benefits of Standards

- Vendors/Suppliers
 - Market access
 - Competitive advantage
 - Vehicle for communication/common understanding

Benefits of Standards

- Government
 - Access to technology
 - For agency and between operators
 - Lower regulatory development and enforcement costs
 - Consensus process reduces adversarial relationship

ANSI Standardization Principles

- **Transparency** access to information; time and opportunity to comment
- **Openness** Participation by anyone
- Impartiality and Consensus No favoring of interests. Consideration of views and attempted reconciliation
- Effectiveness and Relevance Address regulatory and market needs, scientific and technological developments
- Coherence Avoid conflict with other international standards
- **Development Dimension** Facilitate developing country (operator?/vendor?) participation

NACE Standard Development

- Transparency, Openness, Impartiality, and Consensus
 - NACE like most technical associations but unlike most trade associations

• Effectiveness and Relevance

- NACE is leading resource for corrosion and materials technology
- Uses technology to address stakeholder needs
 - Today corrosion specialists
 - Tomorrow all stakeholders

Coherence

- Primary consideration is complementary standards

• **Development Dimension**

- Not deliberate

Example – SP0206 ICDA for Pipelines Carrying Normally Dry Natural Gas

- US legislation required integrity assessments
- ILI and PT impractical for many gas lines
- Focus on time-dependent threats (over static or 'random' led to ECDA development (no IC threat since dry gas)
- Visible pipeline failure from IC created demand for DA approach
- Development project on IC (Dusek, Moghissi, Cookingham, Norris)
 - 4 steps from ECDA
 - Quantify 'the first sag' in a practical way
 - CORROSION/2002 Paper #87 (completely transparent approach)
- How to standardize approach given operator, regulatory, and supplier concerns?

Example – SP0206 Standard Development

- Effectiveness and Relevance Clear regulatory need addressed by technological development. In core NACE competence.
- Impartiality and Consensus TG with 4 pipeline operators, 4 consultants, 1 PHMSA, 1 NTSB.
 - No IP claims, much 'selling' to competing service providers, challenged by scientists, pressured by operators, trust with regulators.
- **Coherence** To be referenced by ASME B31.8S
- **Transparency** Large and frequent email distributions and conference calls with extended group
- **Openness** Participation by anyone
- **Development Dimension** Struggle with 'no threat in

- Assessment
 - SP0206 ICDA Methodology for Pipelines Carrying Normally Dry Natural Gas
 - SP0208 ICDA Methodology for Liquid Petroleum Pipelines
 - TG305 ICDA for Wet Gas Pipelines
 - RP0102 In-Line Inspection of Pipelines

- Monitoring and Sampling
 - RP0192 Monitoring Corrosion in Oil and Gas Production with Iron Counts
 - RP0497, Field Corrosion Evaluation Using Metallic Test Specimens
 - RP0775 Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations
 - TM0194-2004 Field Monitoring of Bacterial Growth in Oil and Gas Systems

- Corrosion Mechanisms
 - TG254 Microbiologically Influenced Internal Corrosion of Pipelines
 - TG380 Underdeposit Corrosion Testing and Mitigation

- Sour service
 - MR0175/ISO 15156 Petroleum and natural gas industries—Materials for use in H2S-containing environments in oil and gas production
 - TM0177 Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments
 - TM0198 Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys (CRAs) for Stress Corrosion Cracking in Sour Oilfield Service
 - TM0103 Laboratory Test Procedures for Evaluation of SOHIC Resistance of Plate Steels Used in Wet H2S Service
 - TM0284 Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking
 - TM0296 Evaluating Elastomeric Materials in Sour Liquid Environments
 - TM0187 Evaluating Elastomeric Materials in Sour Gas Environments

- Chemical Treatment
 - TM0197 Laboratory Screening Test to Determine the Ability of Scale Inhibitors to Prevent the Precipitation of Barium Sulfate and/or Strontium Sulfate from Solution (for Oil and Gas Production Systems)
 - TM0374 Laboratory Screening Tests to Determine the Ability of Scale Inhibitors to Prevent the Precipitation of Calcium Sulfate and Calcium Carbonate from Solution (for Oil and Gas Production Systems)
 - TM0397-2002 Screening Tests for Evaluating the Effectiveness of Gypsum Scale Removers
 - TM0208 Laboratory Test to Evaluate the Vapor-Inhibiting Ability of Volatile Corrosion Inhibitor Materials for Temporary Protection of Ferrous Metal Surfaces

- Coatings, Linings, and Elastomers
 - RP0304-2004, Design, Installation, and Operation of Thermoplastic Liners for Oilfield Pipelines
 - RP0491 Worksheet for the Selection of Oilfield Nonmetallic Seal Systems
 - TG 037 Pipelines, Oilfield: Thermoplastic Liners
 - TG 223 Pipelines, Steel: Standard for In Situ Internal Cleaning and Coating
 - TM0183 Evaluation of Internal Plastic Coatings for Corrosion Control of Tubular Goods in an Aqueous Flowing Environment
 - TM0384 Holiday Detection of Internal Tubular Coatings of Less Than 250 µm (10 mils) Dry-Film Thickness
 - TM0186 Holiday Detection of Internal Tubular Coatings of 250 to 760 µm (10 to 30 mils) Dry-Film Thickness
 - TM0174 Laboratory Methods for the Evaluation of Protective Coatings and Lining Materials on Metallic Substrates in Immersion Service
 - TM0298 Evaluating the Compatibility of FRP Pipe and Tubulars with Oilfield Environments
 - TM0192 Evaluating Elastomeric Materials in Carbon Dioxide Decompression Environments

- Other Corrosion Testing
 - TM0172 Determining Corrosive Properties of Cargoes in Petroleum Product Pipelines
 - TM0169 Laboratory Corrosion Testing of Metals

The Evolution of NACE Standards

- Yesterday
 - By and for corrosion specialists
 - Ad-hoc initiation and scoping
 - All the pieces exist, but could hang together better

NACE #1 Strategic Goal

- NACE International will establish, promote, and maintain a comprehensive, integrated corrosion management framework.
- Goal 1 Strategic Result An industry standard framework for increasing asset life, safe operation, and environmental responsibility
- Comment 'how do we use existing knowledge from NACE standards to improve corrosion decision-making?'

Today

- SP0106 Control of Internal Corrosion in Steel Pipelines and Piping Systems
 - Pipeline design including product quality, flow, pipe configurations, dehydration, de-aeration, chemical treatment, internal coatings, & monitoring
 - Corrosion detection and Measurement including visual inspection, monitoring, sampling, ILI
 - Mitigation including line cleaning, product processing, chemical treatment, coating/lining
 - Measuring effectiveness of corrosion control including monitoring, sampling, inspection
 - Operation and maintenance of IC control systems
 - Records

Diagram of Corrosion Management

Corrosion Management Decisions

Operational and Life Cycle Economic Risk Management

Prevention

- Design
- Construction Materials

Maintenance

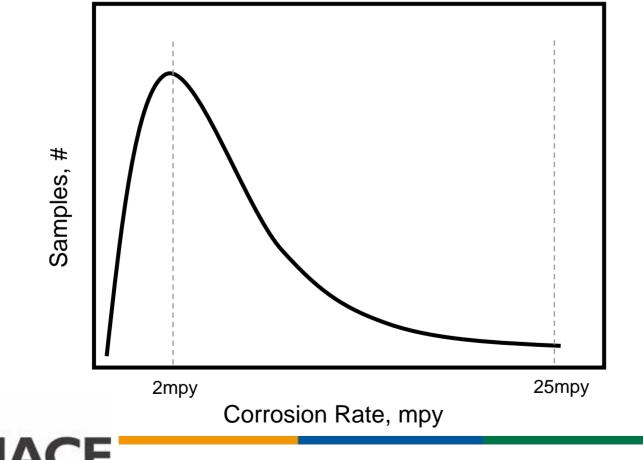
- Mitigation
- Monitoring
- Inspection

Repair

Corrosion Science and Technology

Tomorrow

- TG 370 Pipeline Corrosion Management
 - Overarching document for all relevant NACE pipeline corrosion standards
 - Lifecycle oriented
 - Options (e.g., consider corrosion management vs. CP effectiveness criteria)

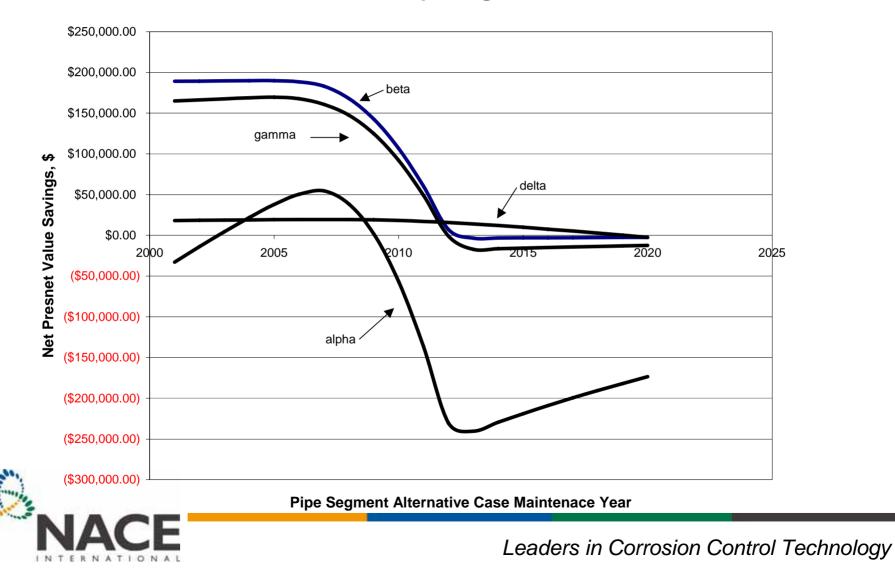

A Possible Future

- Decision making based on established risk and economic analysis principles
 - Use \$\$\$ as basis for risk
 - Risk = P(event)*Consequence
 - Maximize return on invested maintenance dollar
 - Estimate corrosion risk for 'do nothing' base case and alternatives
 - Use economic analysis (anchored by safety)

Pipeline Corrosion is Not Average

• P(event) defined by distribution

Example* – Liner Installation


- Protect pipeline from internal corrosion
- Estimate corrosion rates (and distributions)
- Estimate cost and effectiveness of liner installation

*Mauney, Moghissi, Sridhar

Liner Installation

Net Present Value versus Pipe Segment Maintenance Year

Summary

- NACE standards provide comprehensive information on pipeline internal corrosion
- NACE standard development process meets goals of stakeholders in pipeline integrity
- NACE is developing standards to provide better guidance on corrosion management

