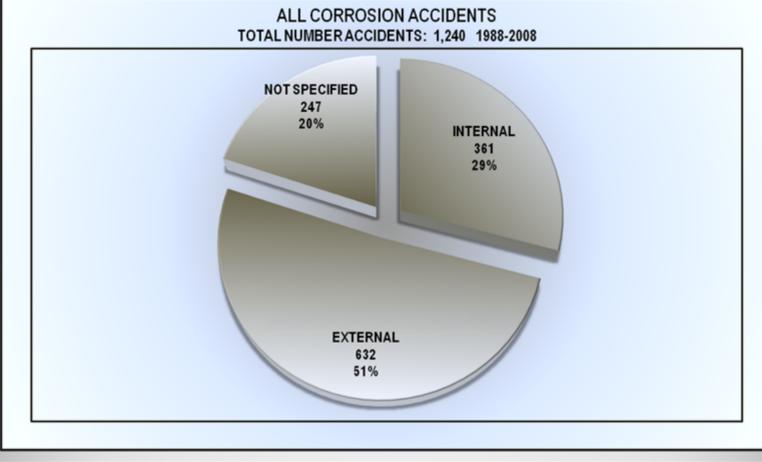
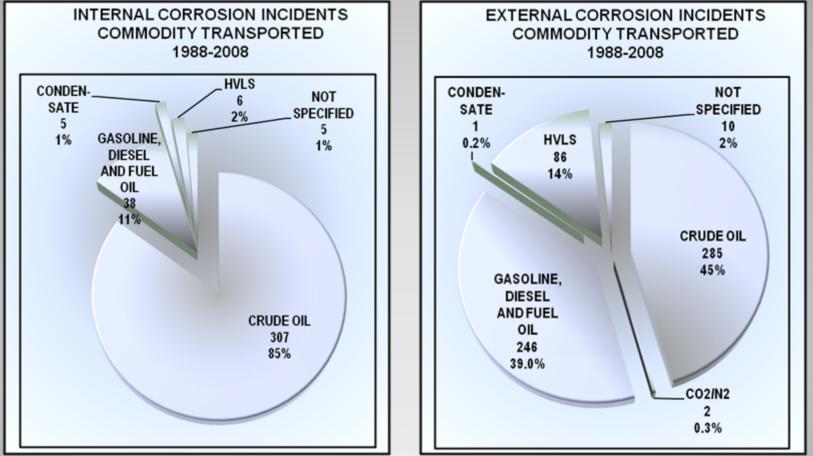

INTERNAL CORROSION Considerations

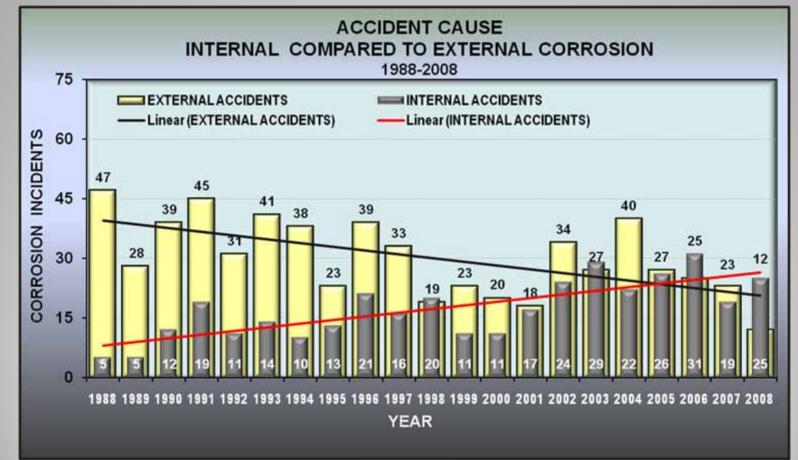
Alan K. Mayberry, P.E. Director, Engineering & Emergency Support Office of Pipeline Safety PHMSA


REPORTED INTERNAL CORROSION ACCIDENTS 1988-2008

- 361 internal corrosion accidents
 29 percent of all corrosion accidents
 7 percent of all HL accidents
 \$45.4M property damage
- Possible internal corrosion accidents
 20 percent all corrosion accidents type was not specified
 - 18 percent all accidents defined "other"


CORROSION ACCIDENTS

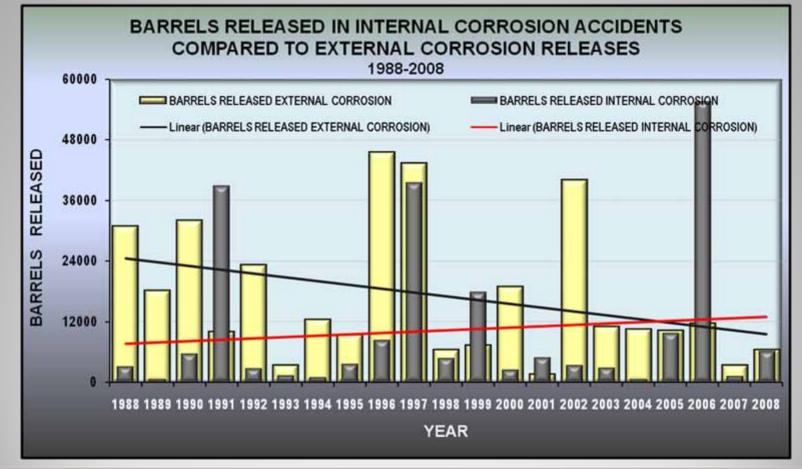
<u>1988-2008</u>



CORROSION ACCIDENTS COMMODITY TRANSPORTED

ALL CORROSION ACCIDENTS INTERNAL VS EXTERNAL 1988-2008

INTERNAL CORROSION ACCIDENTS BARRELS RELEASED 1988-2008


Over 217,000 barrels released as a result of internal corrosion accidents

Prudhoe Bay pipeline leak in March 2006, 4800 barrels released and 2 acres of tundra were affected

BARRELS RELEASED

INTERNAL VS EXTERNAL 1988-2008

CURRENT REGULATIONS Subpart H

195.579 What must I do to mitigate internal corrosion?

- (a) General. If transporting corrosive product, must investigate effect and take adequate steps to mitigate.
- (b) Inhibitors. Does not require use of inhibitors. Requires use of coupons or other monitoring if inhibitors are used.

CURRENT REGULATIONS Subpart H

195.579 What must I do to mitigate internal corrosion?

- (c) Removal of pipe. Inspect for IC whenever pipe is removed. Investigate further if 195.585 would require corrective action.
- (d) Breakout tanks. Standards for tank bottoms.

CURRENT REGULATIONS Subpart H

195.585 What must I do to correct corroded pipe?

Action required if remaining strength is insufficient for MOP or pitting is likely to result in leakage

DETERMINATION OF CORROSIVITY

- Required by 195.579(a)
 Need to consider other factors

 Foreign material: water, contaminants, microbes
 Impurities: sulfur, salts, acids, H₂S
 - Pipeline design: flow, topography, low points
 - Upstream environment
- Document per 195.589(c)

PHMSA EXPECTATIONS "Investigate" Corrosive Effect

- Investigate All Internal Corrosion Risk Factors
- Material being transported
 - Commodity
 - Foreign material/contaminants
 - Sand/silt
 - Water
 - Other contaminants that could cause IC
 - \circ Sulfur, salts, acids, CO₂
 - Microbes

PHMSA EXPECTATION "Investigate" Corrosive Effect

 Investigate All Internal Corrosion Risk Factors

Operating environment

- Flow rate/ velocity
- Operating pressure
- Topography
- Temperature
- Pipe configuration, design, and material specifications

PHMSA EXPECTATION "Investigate" Corrosive Effect

Operating Conditions

- Steady state
- Slack line
- Upsets (in pipeline and in upstream facilities)
- Any other circumstance or condition that could cause, promote, or increase the likelihood of internal corrosion

PHMSA EXPECTATION "Investigate" Corrosive Effect

 Any significant change in risk factor must result in re-investigation of potential for internal corrosion

Investigation results must be

- Valid for current state of pipeline internal corrosion risk factors
- Documented in accordance with 195.589(c)
 Available for inspection

PHMSA INSPECTION EXPERIENCE: OPERATOR INVESTIGATION OF CORROSIVE EFFECTS

- Lack of documentation
- Weak or nonexistent technical analysis
- No consideration for internal corrosion risk factors
- Does not consider ILI results that identify internal corrosion anomalies

WORKSHOP GOALS

- Update on standards development
- Discussion on causes and history of internal corrosion accidents
- Current practices in managing internal corrosion threats
- Improving management of internal corrosion to better understand threat mechanisms and risk factors

