UK perspectives on hydrogen and CO₂ pipelines

Simon Gant and Adam Bannister, HSE Science Division

Pipeline Transportation and Emerging Fuels Research and Development (R&D) Public Meeting and Forum, 30 November 2021

Research - HSE funded to provide evidence which underpins its policy and regulatory activities **Guidance** - freely available to help people comply with health and safety law

© Crown Copyright HSE 2021

RESEARCH AND GUIDANCE FROM

- Introduction to HSE
- Net Zero 2050 targets
- Research challenges
- Recent and ongoing UK research projects
- Remaining knowledge gaps

Outline

Introduction to HSE

HSE is the UK regulator for health and safety

- Includes onshore/offshore pipelines, chemical/oil/gas infrastructure, offshore platforms etc. Activities: research, evidence gathering, policy development, consultation, regulation,
- ____ incident investigation, enforcement
- UK operates a risk based, goal setting regulatory regime
- HSE acts as an enabling regulator, supporting the introduction of new technologies —
- 2,400 total staff (Science Division: 400 staff and 550 acre test site)
- £230M (\$310M) budget: 60% from Government, 40% from external income

Research and development

- In-house R&D to support HSE policy, regulation etc.
- Support to other Government departments
- "Shared research" or joint-industry projects co-funded by HSE
- Bespoke consultancy on a commercial basis

Net Zero 2050 targets

Net Zero 2050

- UK Government announced Ten Point plan¹ in November 2020
- Growth of low-carbon hydrogen and CCUS
 - Regional hydrogen and CCUS clusters
 - Hydrogen for heating: scaling up from neighbourhood trials to a potential hydrogen town by 2030
 - 5 GW of low carbon hydrogen production capacity by 2030
 - Capture 10 Mt of carbon dioxide a year by 2030
 - Working towards cross-government policy decision on hydrogen heating in 2025
- Other Net Zero ambitions
 - Offshore wind, nuclear, zero-emission vehicles/planes/ships, greener buildings, protecting environment, green finance and innovation

¹<u>https://www.gov.uk/government/publications/the-ten-point-plan-for-a-green-industrial-revolution</u>

Research Challenges: Hydrogen Properties

	1		Limited or no effect	Some effect	Significant effect	Test does not differentiate	
Property	Methane, CH ₄	Hydrogen, H ₂					
Density (kg/m ³)	0.68	0.08		Division Charle Development		Effect of Hydrogon	
Dynamic viscosity (mPa.s)	11	8.7	Generic property	Pipeline Steel Parameters		Effect of Hydrogen	
Specific heat capacity at constant	2.2	14	Strength	Yield (0.2% or 0.5% proof stress)	Limited effect Limited effect		
pressure (kJ/kg.K)				Ultimate tensile strength (UTS)			
Ratio of specific heat capacities	1.31	1.41				insited offent	
Lower flammable limit (% v/v)	4.4	4.0		YS/UTS ratio (Y/T)	Limited effect		
Upper flammable limit (% v/v)	15	75		Young's Modulus (E)	No effect		
Detonation cell size (mm)	250-310	15		Poisson's ratio (n)	No effect		
Stoichiometric concentration (% v/v)	9.4 595	30 560					
			Ductility	Elongation (Total)	Significant reduction		
Auto-ignition temperature (°C)				Elongation (Uniform)	Limited effect		
Minimum ignition energy (mJ)	0.26	0.01	Charpy impact	Charpy impact energy	Limited effect/ strain rate too high		
Minimum quenching distance (mm)	2.0	0.5		Specific transition temperature (T27J, Limited effect/ strain rate too high			
Burning velocity (m/s)	0.37	3.2		T40J)			
Maximum Experimental Safe Gap	1.12	0.29	Crack	Drop weight tear test (DWTT) e.g.	No data found on DWTT, but possibly limited effect due to high strain rate		
(mm)			propagation	temperature for 85% shear fracture			
Minimum Igniting Current ratio	1.0	0.25	resistance	appearance			
			Fracture toughness	K/J/CTOD initiation fracture toughness	Some reduction		
Energy density per unit mass	56	142	tougimess		Significant reduction	n	
(MJ/kg)				J/CTOD ductile tearing resistance	orgrinicant reduction		
Energy density per unit volume	40	13		Fatigue threshold stress intensity slight reduction in some cases		some cases	
(MJ/m ³)				factor range (∆Kth)			
Temperature Class	T1	T1		Fatigue Crack growth rate	Significant increase; many variables		
Equipment Group	IIA	IIC		raugue orack growth late			
© Crown Copyright HSE 2021				S-N fatigue line	Effect observed mo region	ore strongly in high stress LCF	

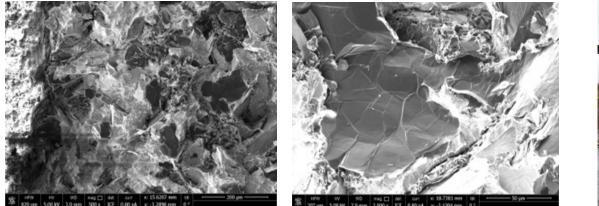
Research Challenges: Impact on Pipeline Network

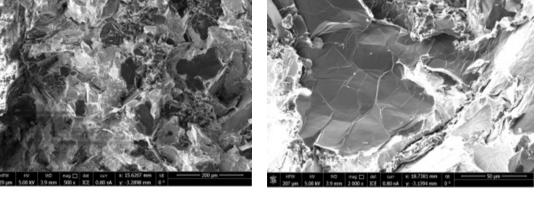
Need to assess impact of hydrogen on transmission and distribution pipeline network (including AGIs)

- Materials performance
 - Effect of hydrogen embrittlement and fatigue on design, construction, operation and maintenance
- **Risk assessment**
 - Change in failure frequencies, leakage, gas migration, dispersion, accumulation, ignition potential, fire and explosion effects, hazardous area classification
- **Operational procedures**
 - Pipeline purging, venting, inspection, maintenance, leak detection, repair
- Equipment
 - Gas detectors, regulators, heat exchangers, meters, kiosks, PPE, software
- **Training and Regulation**

Overview of UK Gas Network

- Multiple gas companies operate across the UK
- UK gas network includes:
 - National Transmission System (up to 85 bar)
 - Local Transmission System (7 to 60+ bar)
 - Distribution network (< 7 bar)
 - Domestic installation (< 75 mbar)




Independent gas transporters S...leading utility networks ŝ Scotland Gas Networks Northern **Gas Networks D** BORD GÁIS nationalgrid WALES&WEST Gas distribution Southern Gas Networks

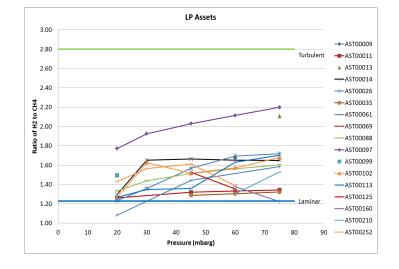
Ongoing hydrogen projects

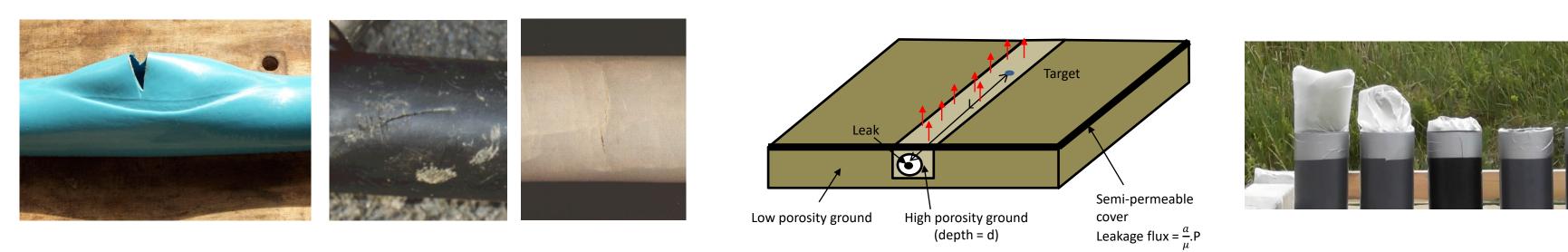
- Blend of 20% hydrogen in natural gas
- Scientific analysis and experiments to support QRA for 20% blend
- Community trials at Keele University and Winlaton village ongoing (668 homes)

https://h21.green/

- Repurposing of existing natural gas distribution network for 100% hydrogen
- Leakage tests on recovered assets, gas migration through soil, dispersion, accumulation, ignition, fires, explosion severity, QRA, operational procedures

-IvDeploy




Image of H21 test site at Spadeadam courtesy of DNV (© DNV, 2021)

Ongoing hydrogen projects

https://www.sgn.co.uk/H100Fife

FutureGrid

https://www.nationalgrid.com /FutureGrid

- retrieved from the UK gas transmission network

100% hydrogen in a new gas distribution network

Testing of PE pipe, experiments and analysis to support QRA Community trials in Scotland (300 homes) planned for 2023

Repurposing of existing national gas transmission network for hydrogen

Analysis of 2% and 20% hydrogen blends plus 100% hydrogen

Tests on different types, sizes, material grades of NTS assets, permeation, pipe coating and CP testing, fatigue, flange tests, leakage, rupture tests

Phase 1: construction of hydrogen test facility at DNV Spadeadam using assets

Build started in April 2021, testing to start in October 2022

Ongoing hydrogen projects

https://www.hy4heat.info/

- Hydrogen in residential and commercial buildings and gas appliances
 - Focus on downstream of the emergency control valve
 - Gas quality, metering, appliances, purging, tightness testing, trials
 - Two demonstration hydrogen homes

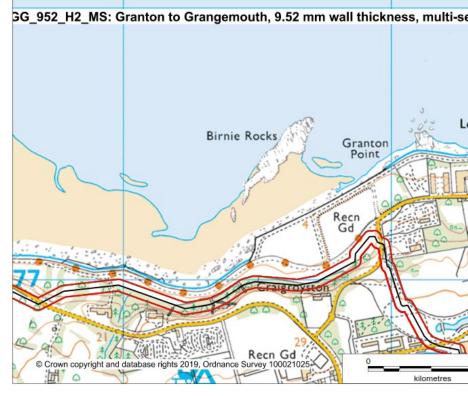
Hydrogen Heating Programme

- 2021-2025, HSE funded by BEIS to provide support on: Assessment of evidence on the safety of hydrogen heating Identification of future safety regulation requirements Support to hydrogen trials (HyDeploy, H100, H21 etc.)

https://www.businessgree n.com/news/4034556/gre en-gas-uk-hydrogenhomes-open-public

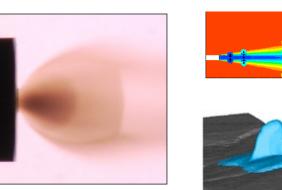


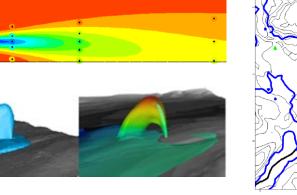
Future hydrogen projects

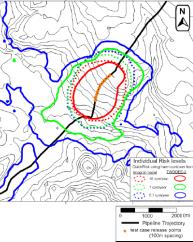

https://www.sgn.co.uk/about-us/ future-of-gas/hydrogen/lts-futures Hydrogen in the Local Transmission System (LTS)

- Initial desk-based feasibility study on repurposing the LTS for hydrogen and CO₂ transmission completed in 2020 by SGN and HSE https://hysafe.info/ichs2021/
- New 3-year project proposed starting in April 2022
 - Live trial design (Granton to Grangemouth pipeline)
 - 2. Lab material testing
 - 3. Offsite testing (at the DNV Spadeadam facility)
 - Live trial (repurposing trial and demonstration including uprating) 4.
 - QRA, Case for safety 5.
 - Knowledge dissemination 6.

Map data © Google 2021


Carbon Capture Utilisation and Storage (CCUS)




- Workplace Health Expert Committee (WHEC)
- Contract opportunities
- Statistics
- Economics of health and safety
- LOC John

development of industrial-scale CCS by contributing to the assessment and control of risks early in the design and deployment of the technology. The research has contributed to the scientific evidence base that, if CCS is deployed in with UK, will inform HSE policy decisions to ensure that the regulatory framework for pipelines is effective and proportionate to the potential risks associated with CCS.

http://www.hse.gov.uk/research/rrhtm/rr1121.htm

- Significant research in 2007-2017
- Renewed interest recently with regional hydrogen and CCUS clusters
- Initial regulatory review of some UK projects ongoing
 - Repurposing of existing natural gas pipelines for transport of gaseous CO_2
 - CO₂ pipelines regulatory policy under review

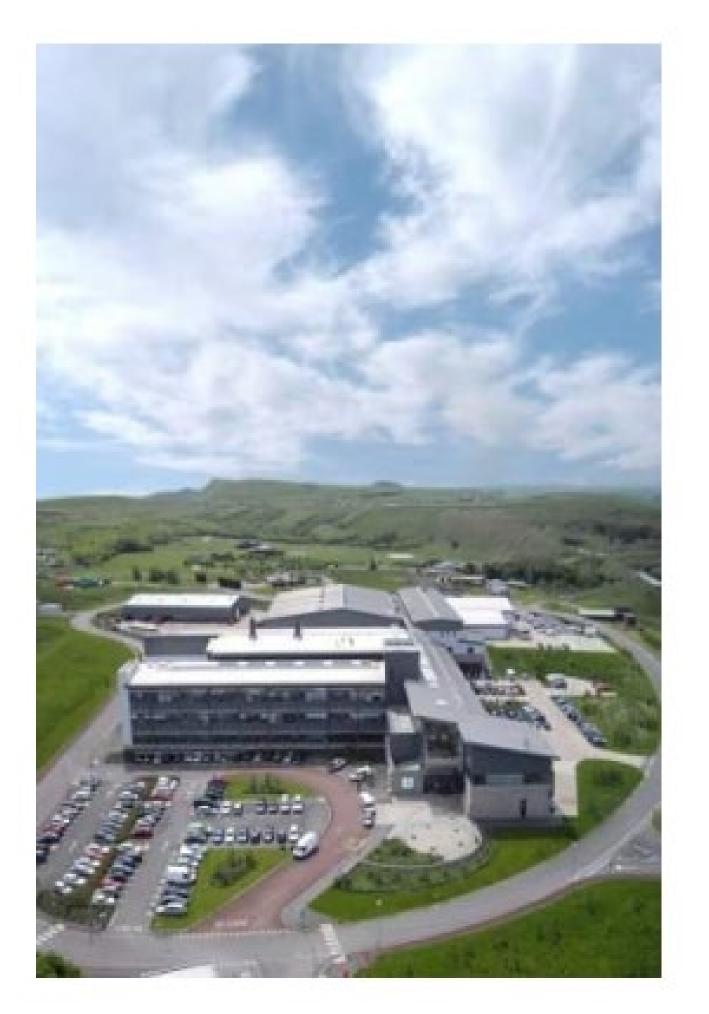
- Gas-phase CO₂ pipelines onshore
- Dense-phase CO₂ pipelines offshore

Remaining Knowledge Gaps

Transmission/distribution pipelines and associated infrastructure

- Engineering Critical Assessments for pipelines changing from NG to hydrogen service and impact on required inspection capabilities
- Evaluation of repair techniques, e.g. preheat requirements for steels previously exposed to hydrogen service, hydrogen tightness of clamps and sleeves
- Evaluation of potential beneficial effects of trace elements (e.g. oxygen) on hydrogen pipeline fatigue properties and fracture toughness
- Investigation of materials issues on assets in the existing network (e.g. high tensile steel springs in valves, cast iron pipelines)
- Improved crack growth models and failure rate models for both hydrogen and CO_2 pipelines
- Dense-phase CO₂ pipelines: models for assessing fracture toughness to prevent running ductile fractures (Battelle two-curve method)

Remaining Knowledge Gaps


- Safety of operational procedures, e.g. detection, ignition, purging, repairs Safety of infrastructure, e.g. gas accumulation and explosion relief of governor kiosks Operation of components (e.g. regulators, meters) at higher flowrates (filters, noise
- issues, controls etc.)
- Background leakage modelling: effect of backfill on leakage rates across the network and overall shrinkage
- Use of hydrogen in multi-occupancy (high rise) buildings Human factors: training and competency, public acceptance and response

Many of the above issues are already being considered in ongoing and proposed projects, e.g. HyDeploy, H21

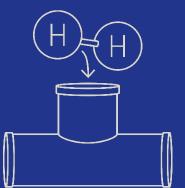
Acknowledgements

- ERM and IGEM.

Thank you

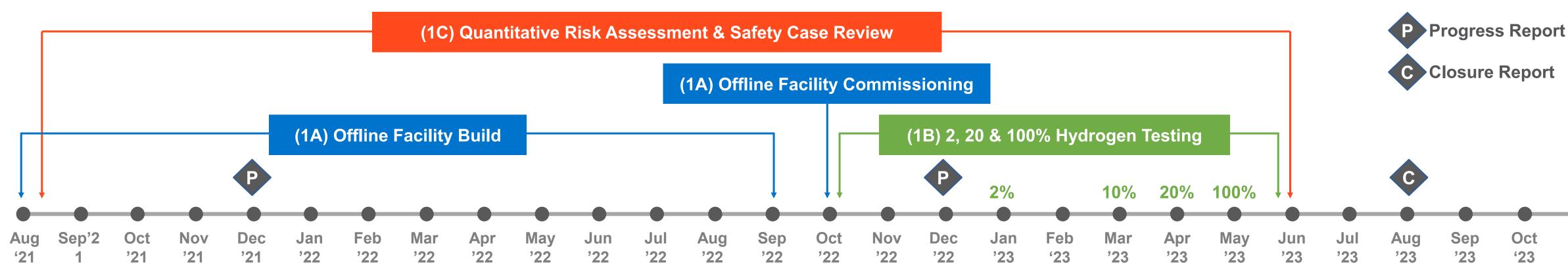
The projects mentioned here are funded and supported by HSE, the OFGEM Gas Network Innovation Competition, SGN, NGN, Cadent, WWU, National Grid, BEIS, DNV, Progressive Energy,

The contents of this presentation, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy



FutureGrid

An ambitious programme to build a hydrogen test facility from decommissioned assets at DNV's facility in Cumbria to demonstrate the National Transmission System (NTS) can transport hydrogen. Testing will be completed in two parts:



NTS assets of different types, sizes, and material grades will be tested with 2, 20 & 100% hydrogen. The facility will initially run on 100% natural gas to collect baseline data for the equipment and then move through 2%, 10% and 20% hydrogen / natural gas mixtures and then 100% hydrogen.

Standalone Hydrogen Test Modules Standalone hydrogen test modules will provide key data required to feed into the main facility including:) Material Permeation Testing (2) Pipe Coating & CP Testing (3) Fatigue Testing (4) Flange Testing (5) Asset Leak Testing (6) Rupture Testing

This will help us understand how hydrogen interacts with our assets, so that we can develop the appropriate safety standards required to operate our network. Construction is now underway with testing on the main Offline Hydrogen Test Facility set to begin mid 2022.

www.nationalgrid.com/FutureGrid

nationalgrid

ort t