## PHMSA

#### Informational Public Meeting

Westin Galleria Houston, Texas

December 13 – 15, 2022

**Pipeline and Hazardous Materials Safety Administration Office of Pipeline Safety** 

#### Regulatory Development & Current Implementation of Gas PIR

Steve Nanney – PHMSA, Sr. Technical Advisor December 14, 2022



U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

#### Overview

- GT Ruptures 2017 to present
  - Potential versus Actual Impact Radius
- Identifying High Consequence Areas (HCA)
  - Definitions
    - $\circ$  Method 1
    - Method 2
- Potential Impact Radius (PIR)
  - $\circ$  Calculation
  - $\circ~$  PIR versus Pressure and Diameter
- Gas Transmission (GT) Pipeline Mileage
  - HCA, Moderate Consequence Area (MCA), and All Other
- PIR Summary





#### Gas Transmission Pipeline Ruptures – Potential vs Actual Impact Radius 2017 to present

|      | Location         | Pipe<br>Diameter<br>(inch) | MAOP<br>(psi) | Pressure at<br>time of<br>Failure<br>(psi) | Based on<br>MAOP | PIR (ft)                                         | Impact Area      |                 |                           |                               |                              |
|------|------------------|----------------------------|---------------|--------------------------------------------|------------------|--------------------------------------------------|------------------|-----------------|---------------------------|-------------------------------|------------------------------|
| Year |                  |                            |               |                                            |                  | Based<br>on<br>Pressure<br>at time<br>of failure | Length<br>(feet) | Width<br>(feet) | Pipe<br>Ejected<br>(feet) | Isolation<br>Time<br>(hr:sec) | Fire<br>Duration<br>(hr:sec) |
| 2017 | Dixon IL         | 20                         | 800           | 706                                        | 391              | 367                                              | 365              | 163             | -                         | 0:31                          | 3:06                         |
| 2018 | Batesville OH    | 24                         | 1,440         | 1,296                                      | 629              | 596                                              | 50               | 50              | -                         | 0:00                          | 1:04                         |
| 2018 | Moundville OH    | 36                         | 1,440         | 1,280                                      | 943              | 889                                              | 250              | 250             | 100                       | 0:25                          | 3:05                         |
| 2018 | Hesston KS       | 26                         | 899           | 837                                        | 538              | 519                                              | 400              | 200             | 254                       | 0:02                          | 2:44                         |
| 2018 | Buffalo OK       | 26                         | 765           | 751                                        | 497              | 492                                              | 110              | 60              | 170                       | 1:09                          | -                            |
| 2018 | Woodruff UT      | 20                         | 918           | 780                                        | 419              | 386                                              | 143              | 90              | 430                       | 1:21                          | -                            |
| 2018 | Dixon Springs TN | 22                         | 773           | 756                                        | 422              | 418                                              | 30               | 20              | 75                        | 0:38                          | -                            |
| 2019 | Caldwell OH      | 30                         | 936           | 803                                        | 634              | 586                                              | 500              | 500             | -                         | 1:35                          | 14:05                        |
| 2019 | Mexico MO        | 30                         | 900           | 889                                        | 621              | 618                                              | 437              | 286             | 125                       | 1:12                          | 1:31                         |
| 2019 | Hot Springs AR   | 30                         | 1,000         | 980                                        | 655              | 648                                              | 252              | 114             | 306                       | 2:12                          | -                            |
| 2019 | Danville KY      | 30                         | 936           | 925                                        | 634              | 630                                              | 704              | 645             | 600                       | 1:52                          | 3:07                         |
| 2019 | Artesia NM       | 20                         | 1,000         | 880                                        | 437              | 410                                              | 100              | 60              | 360                       | 3:23                          | -                            |
| 2020 | Lake Worth FL    | 18                         | 866           | 846                                        | 366              | 362                                              | 300              | 50              | 400                       | 0:25                          | -                            |
| 2021 | Ellsworth KS     | 30                         | 991           | 958                                        | 652              | 641                                              | 516              | 344             | 500                       | 1:29                          | 1:31                         |
| 2021 | Coolage AZ       | 30                         | 944           | 863                                        | 636              | 609                                              | 600              | 360             | 125                       | 2:46                          | 3:01                         |
| 2022 | Uniontown, AL    | 18                         | 1,200         | 1,169                                      | 431              | 425                                              | 468              | 160             | 72                        | 1:26                          | 1:45                         |
| 2022 | Clermont, PA     | 24                         | 858           | 854                                        | 486              | 484                                              | 500              | 250             | 304                       | 0:02                          | 0:22                         |



U.S. Department of Transportation

**PHMSA: Your Safety is Our Mission** 

Pipeline and Hazardous Materials Safety Administration

- Potential Impact Radius (PIR) developed for Gas Transmission Integrity Management to identify High Consequence Areas
  - Added to 49 CFR 192.903 in late 2003 <u>03-30280.pdf</u> (govinfo.gov)
  - Docket No. RSPA–00–7666; Amendment 192–95
  - Pipeline Safety: Pipeline Integrity Management in High Consequence Areas (Gas Transmission Pipelines)
- PIR calculations for natural gas were developed by:
  - Gas Research Institute (GRI) report by C-FER Technologies (C-FER), "A Model for Sizing High Consequence Areas Associated with Natural Gas Pipelines" (Stephens 2000)





- PIR is based on a heat intensity threshold of 5000
  Btu/hr-foot<sup>2</sup> and a significant chance of fatal injury as a 1% chance of mortality.
  - The exposure time adopted was 30 seconds based on the premise that an exposed person would stay in place for 1 to 5 seconds to evaluate the situation and then run at 5 miles per hour (7.3 feet per second) to some type of shelter within approximately 200 feet of their initial position.



Pipeline and Hazardous Materials Safety Administration



#### Identifying Gas Transmission (GT) High Consequence Areas (HCAs) Definitions



#### **Definitions - Potential Impact Radius (PIR)**

- Used for Gas Transmission Integrity Management (49 CFR Part 192, Subpart O) to determine HCAs.
- is the radius of circle within which the failure of a pipeline could have significant impact on people or property.
- Moderate Consequence Area uses PIR





#### **Identifying GT HCAs - Definitions**

#### **Definitions - Identified Site** defined as:

- An outside area or open structure that is occupied by twenty (20) or more persons on at least 50 days in any twelve (12)month period; or
- A building that is occupied by twenty (20) or more persons on at least five (5) days a week for ten (10) weeks in any twelve (12)-month period; or
- A facility occupied by persons who are confined, are of impaired mobility, or would be difficult to evacuate. (e.g., hospitals, prisons, schools, day-care facilities, retirement facilities or assisted-living facilities).



#### **Identifying GT HCAs - Definitions**

#### Definitions

- **Potential impact circle (PIC)** is defined as a circle of radius equal to the **potential impact radius (PIR)** 49 CFR 192.903
- Potential impact radius (PIR)
  - **Radius (r)** = 0.69 \*  $\sqrt{(p^* d^2)}$ 
    - 'r' is the radius of a circular area in feet surrounding the point of postulated failure;
    - 'p' is the maximum allowable operating pressure (MAOP) in the pipeline segment in pounds per square inch; and
    - `d' is the nominal diameter of the pipeline in inches.



#### **Identifying GT HCAs - Definitions**

| Class Locations                                                                                         | Class 1                  | Class 2                                        | Class 3                                   | Class 4                                              |
|---------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------------------|
| <b>Definition:</b><br>Dwellings along a 1-mile<br>length and 660-feet on either<br>side of the pipeline | 10 or fewer<br>dwellings | 11-45 dwellings                                | 46 or more dwellings<br>OR occupied sites | Buildings with 4 or<br>more stories are<br>prevalent |
| Examples                                                                                                | Very rural areas         | Sparse suburbs,<br>small towns and<br>villages | Urban areas,<br>suburban<br>developments  | Urban downtowns,<br>apartment complexes              |

#### **Relative Potential Consequences to People**









Pipeline and Hazardous Materials Safety Administration



#### **Identifying GT HCAs – Method 1**

#### **Operators can choose one of 2 methods to identify HCAs**

- **Method 1** is based on class locations and includes:
  - All Class 3 and 4 locations;
  - Any area in a Class 1 or Class 2 location where the potential impact radius is greater than 660 feet (200 meters), and the area within a potential impact circle (PIC) contains 20 or more buildings intended for human occupancy (affects only largediameter, high-pressure lines); or
  - Any area in a Class 1 or Class 2 location where the potential impact circle contains an "identified site" (areas where people congregate).



### **Identifying GT HCAs – Examples of Method 1**



#### **Identifying GT HCAs – Method 2**

#### Method 2

- Method 2 is based on calculating the distance at which significant effects can be expected from a postulated pipeline rupture and resulting fire, using PIR, and includes:
  - Any location on the pipeline with a potential impact circle containing—

(i) 20 or more buildings intended for human occupancy; or(ii) An identified site

• Rule provisions extend the HCA outside the first and last potential impact circle along a segment by one PIR



### Identifying GT HCAs – Method 2 Identified Site

#### **Example of an HCA Segment Using Method 2 – Identified Site**



Includes the Area Extending Axially Along the Length of the Pipeline – One PIR in each direction – shown in 49 CFR Part 192, Appendix E



13

#### **Identifying GT HCAs – Method 2**



#### **PIR versus Pressure and Diameter**





U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration



#### Identifying Gas Transmission Moderate Consequence Area - Definition

- Moderate Consequence Area (MCA)
  - Uses the Potential Impact Radius of 49 CFR 192.903
  - Five or more buildings intended for human occupancy
  - Any portion of the paved surface, including shoulders, of a designated interstate, other freeway, or expressway, as well as any other principal arterial roadway with 4 or more lanes

#### • 49 CFR 192.710(a)(2)

 Requires a piggable Gas Transmission MCA with a Maximum Allowable Operating Pressure (MAOP) over 30 percent of specified minimum yield strength (SMYS) to be periodically reassessed every 10 years.



Safety Administration

#### GT Pipeline Mileage – HCA, MCA, and All Other

## Gas Transmission Pipeline – (10/03/22)

|         | Total<br>(miles) | HCA    | MCA<br>ILI-able | MCA<br>ILI-not-able | All<br>Other |
|---------|------------------|--------|-----------------|---------------------|--------------|
| Class 1 | 236,538          | 1,646  | 7,913           | 1,192               | 225,787      |
| Class 2 | 30,419           | 1,631  | 7,059           | 866                 | 20,863       |
| Class 3 | 33,689           | 17,101 | 4,423           | 1,768               | 10,397       |
| Class 4 | 871              | 732    | 50              | 6                   | 83           |
| Total   | 301,517          | 21,110 | 19,445          | 3,832               | 257,130      |

GT Miles from Part L of the GGGT Annual Report; 2) HCA Miles from Part Q of the GGGT Annual Report;
 MCA Miles from Part R of the GGGT Annual Report; 4) CY 2021 GT Annual Report data as-of 10/3/2022

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration





#### **Potential Impact Radius - Summary**

- Potential Impact Radius (PIR) is used to determine high consequence areas (HCA) pipeline mileage for Gas Transmission (GT) pipelines.
- PIR is used to determine the mileage in Moderate Consequence Areas (MCAs).
- 49 CFR 192.903 allows "2 Methods" for determining GT HCAs
  - (1) Class location or
  - (2) PIR.



#### **Potential Impact Radius - Summary**

#### • <u>Considerations</u>:

- PHMSA has strengthened the assessment and repair requirements for non-HCAs in the Gas Rule RIN 1 and 2:
  - 49 CFR 192.712 and 192.714 strengthens repair criteria for non-HCAs
  - 49 CFR 192.710 requires initial and periodic assessments of piggable MCAs
- Gas Rule Impact:
  - 21,110 HCA miles and 19,445 MCA miles
  - $\circ$  Total HCA & MCA = 40,555 miles



Safety Administration

## Gas Transmission Pipeline Ruptures – Potential vs Actual Impact Radius – 2017 to present

|      | Location         |                            |               | Pressure at                 |                              | PIR (ft)<br>Based | Impact Area      |                 |                           | Isolation                 | Fire                          |
|------|------------------|----------------------------|---------------|-----------------------------|------------------------------|-------------------|------------------|-----------------|---------------------------|---------------------------|-------------------------------|
| Year |                  | Pipe<br>Diameter<br>(inch) | MAOP<br>(psi) | time of<br>Failure<br>(psi) | PIR (ft)<br>Based on<br>MAOP | on                | Length<br>(feet) | Width<br>(feet) | Pipe<br>Ejected<br>(feet) | Time<br>(hour:<br>second) | Duration<br>(hour:<br>second) |
| 2017 | Dixon IL         | 20                         | 800           | 706                         | 391                          | 367               | 365              | 163             | -                         | 0:31                      | 3:06                          |
| 2018 | Batesville OH    | 24                         | 1,440         | 1,296                       | 629                          | 596               | 50               | 50              | -                         | 0:00                      | 1:04                          |
| 2018 | Moundville OH    | 36                         | 1,440         | 1,280                       | 943                          | 889               | 250              | 250             | 100                       | 0:25                      | 3:05                          |
| 2018 | Hesston KS       | 26                         | 899           | 837                         | 538                          | 519               | 400              | 200             | 254                       | 0:02                      | 2:44                          |
| 2018 | Buffalo OK       | 26                         | 765           | 751                         | 497                          | 492               | 110              | 60              | 170                       | 1:09                      | -                             |
| 2018 | Woodruff UT      | 20                         | 918           | 780                         | 419                          | 386               | 143              | 90              | 430                       | 1:21                      | -                             |
| 2018 | Dixon Springs TN | 22                         | 773           | 756                         | 422                          | 418               | 30               | 20              | 75                        | 0:38                      | -                             |
| 2019 | Caldwell OH      | 30                         | 936           | 803                         | 634                          | 586               | 500              | 500             | -                         | 1:35                      | 14:05                         |
| 2019 | Mexico MO        | 30                         | 900           | 889                         | 621                          | 618               | 437              | 286             | 125                       | 1:12                      | 1:31                          |
| 2019 | Hot Springs AR   | 30                         | 1,000         | 980                         | 655                          | 648               | 252              | 114             | 306                       | 2:12                      | -                             |
| 2019 | Danville KY      | 30                         | 936           | 925                         | 634                          | 630               | 704              | 645             | 600                       | 1:52                      | 3:07                          |
| 2019 | Artesia NM       | 20                         | 1,000         | 880                         | 437                          | 410               | 100              | 60              | 360                       | 3:23                      | -                             |
| 2020 | Lake Worth FL    | 18                         | 866           | 846                         | 366                          | 362               | 300              | 50              | 400                       | 0:25                      | -                             |
| 2021 | Ellsworth KS     | 30                         | 991           | 958                         | 652                          | 641               | 516              | 344             | 500                       | 1:29                      | 1:31                          |
| 2021 | Coolage AZ       | 30                         | 944           | 863                         | 636                          | 609               | 600              | 360             | 125                       | 2:46                      | 3:01                          |
| 2022 | Uniontown, AL    | 18                         | 1,200         | 1,169                       | 431                          | 425               | 468              | 160             | 72                        | 1:26                      | 1:45                          |
| 2022 | Clermont, PA     | 24                         | 858           | 854                         | 486                          | 484               | 500              | 250             | 304                       | 0:02                      | 0:22                          |



**U.S. Department of Transportation** 

Pipeline and Hazardous Materials Safety Administration



# **Thank You**

#### Steve Nanney – PHMSA steve.nanney@dot.gov





21

**PHMSA: Your Safety is Our Mission** 

Pipeline and Hazardous Materials Safety Administration