PHMSA

Informational Public Meeting

Westin Galleria Houston, Texas

December 13 - 15, 2022
Pipeline and Hazardous Materials Safety Administration Office of Pipeline Safety

Regulatory Development \& Current Implementation of Gas PIR

Steve Nanney - PHMSA, Sr. Technical Advisor

December 14, 2022

Overview

- GT Ruptures - 2017 to present
- Potential versus Actual Impact Radius
- Identifying High Consequence Areas (HCA)
- Definitions
- Method 1
- Method 2
- Potential Impact Radius (PIR)
- Calculation
- PIR versus Pressure and Diameter
- Gas Transmission (GT) Pipeline Mileage
- HCA, Moderate Consequence Area (MCA), and All Other
- PIR Summary

Gas Transmission Pipeline Ruptures - Potential vs Actual Impact Radius 2017 to present

- Potential Impact Radius (PIR) - developed for Gas Transmission Integrity Management to identify High Consequence Areas
- Added to 49 CFR 192.903 in late 2003-03-30280.pdf (govinfo.gov)
- Docket No. RSPA-00-7666; Amendment 192-95
- Pipeline Safety: Pipeline Integrity Management in High Consequence Areas (Gas Transmission Pipelines)
- PIR calculations for natural gas were developed by:
- Gas Research Institute (GRI) report by C-FER Technologies (CFER), "A Model for Sizing High Consequence Areas Associated with Natural Gas Pipelines" (Stephens 2000)

Potential Impact Radius - 49 CFR 192.903 - Integrity Management

- PIR is based on a heat intensity threshold of 5000

 Btu/hr-foot ${ }^{2}$ and a significant chance of fatal injury as a 1% chance of mortality.- The exposure time adopted was 30 seconds based on the premise that an exposed person would stay in place for 1 to 5 seconds to evaluate the situation and then run at 5 miles per hour (7.3 feet per second) to some type of shelter within approximately 200 feet of their initial position.

Identifying Gas Transmission (GT)

 High Consequence Areas (HCAs) Definitions

- Used for Gas Transmission Integrity Management (49 CFR Part 192, Subpart O) to determine HCAs.
- is the radius of circle within which the failure of a pipeline could have significant impact on people or property.
- Moderate Consequence Area - uses PIR

Identifying GT HCAs - Definitions

Definitions - Identified Site defined as:

- An outside area or open structure that is occupied by twenty (20) or more persons on at least 50 days in any twelve (12)month period; or
- A building that is occupied by twenty (20) or more persons on at least five (5) days a week for ten (10) weeks in any twelve (12)-month period; or
- A facility occupied by persons who are confined, are of impaired mobility, or would be difficult to evacuate. (e.g., hospitals, prisons, schools, day-care facilities, retirement facilities or assisted-living facilities).

Identifying GT HCAs - Definitions

Definitions

- Potential impact circle (PIC) is defined as a circle of radius equal to the potential impact radius - (PIR) - 49 CFR 192.903
- Potential impact radius (PIR)
- Radius $(\mathbf{r})=0.69 * \sqrt{ }\left(\mathrm{p}^{*} \mathrm{~d}^{2}\right)$
- 'r' is the radius of a circular area in feet surrounding the point of postulated failure;
- ' p ' is the maximum allowable operating pressure (MAOP) in the pipeline segment in pounds per square inch; and
- 'd' is the nominal diameter of the pipeline in inches.

Identifying GT HCAs - Definitions

Class Locations	Class 1	Class 2	Class 3	Class 4
Definition: Dwellings along a 1-mile length and 660-feet on either side of the pipeline	10 or fewer dwellings	11-45 dwellings	46 or more dwellings OR occupied sites	Buildings with 4 or more stories are prevalent
Examples	Very rural areas	Sparse suburbs, small towns and villages	Urban areas, suburban developments	Urban downtowns, apartment complexes

Relative Potential Consequences to People

Class 3

PHMSA: Your Safety is Our Mission

Identifying GT HCAs - Method 1

Operators can choose one of 2 methods to identify HCAs

- Method $\mathbb{1}$ is based on class locations and includes:
- All Class 3 and 4 locations;
- Any area in a Class 1 or Class 2 location where the potential impact radius is greater than 660 feet (200 meters), and the area within a potential impact circle (PIC) contains 20 or more buildings intended for human occupancy (affects only largediameter, high-pressure lines); or
- Any area in a Class 1 or Class 2 location where the potential impact circle contains an "identified site" (areas where people congregate).

Identifying GT HCAs - Examples of Method 1

46 or more BIHOs Or with 4 or more stories

Class 1 or 2
ABC Pipeline

Identifying GT HCAs - Method 2

Method 2

- Method 2 is based on calculating the distance at which significant effects can be expected from a postulated pipeline rupture and resulting fire, using PIR, and includes:
- Any location on the pipeline with a potential impact circle containing-
(i) 20 or more buildings intended for human occupancy; or
(ii) An identified site
- Rule provisions extend the HCA outside the first and last potential impact circle along a segment by one PIR

Identifying GT HCAs - Method 2 Identified Site

Example of an HCA Segment Using Method 2 - Identified Site

Includes the Area Extending Axially Along the Length of the Pipeline One PIR in each direction - shown in 49 CFR Part 192, Appendix E

Identifying GT HCAs - Method 2

Maximum Allowable

 Operating Pressure $\mathbf{(M A O P})=1,200$ psiPipe Diameter $=36$ inches

$\mathrm{PIR}=0.69 \sqrt{ } \mathrm{pd}^{2}=$ 861 feet

Building Count \geq 20 within the PIC defines as HCA

PIR versus Pressure and Diameter

Identifying Gas Transmission
 Moderate Consequence Area - Definition

- Moderate Consequence Area (MCA)
- Uses the Potential Impact Radius of 49 CFR 192.903
- Five or more buildings intended for human occupancy
- Any portion of the paved surface, including shoulders, of a designated interstate, other freeway, or expressway, as well as any other principal arterial roadway with 4 or more lanes
- 49 CFR 192.710(a)(2)
- Requires a piggable Gas Transmission MCA with a Maximum Allowable Operating Pressure (MAOP) over 30 percent of specified minimum yield strength (SMYS) to be periodically reassessed every 10 years.

GT Pipeline Mileage - HCA, MCA, and All Other

Gas Transmission Pipeline - (10/03/22)

	Total (miles)	HCA	MCA ILI-able	MCA ILI-not-able	All Other
Class 1	236,538	1,646	7,913	1,192	225,787
Class 2	30,419	1,631	7,059	866	20,863
Class 3	33,689	17,101	4,423	1,768	10,397
Class 4	871	732	50	6	83
Total	301,517	21,110	19,445	3,832	257,130

1) GT Miles from Part L of the GGGT Annual Report; 2) HCA Miles from Part Q of the GGGT Annual Report;
2) MCA Miles from Part R of the GGGT Annual Report; 4) CY 2021 GT Annual Report data as-of 10/3/2022

Potential Impact Radius - Summary

- Potential Impact Radius (PIR) is used to determine high consequence areas (HCA) pipeline mileage for Gas Transmission (GT) pipelines.
- PIR is used to determine the mileage in Moderate Consequence Areas (MCAs).
- 49 CFR 192.903 allows " 2 Methods" for determining GT HCAs
- (1) Class location or
- (2) PIR.

Potential Impact Radius - Summary

- Considerations:

- PHMSA has strengthened the assessment and repair requirements for non-HCAs in the Gas Rule - RIN 1 and 2 :
- 49 CFR 192.712 and 192.714 strengthens repair criteria for non-HCAs
- 49 CFR 192.710 - requires initial and periodic assessments of piggable MCAs
- Gas Rule Impact:
- 21,110 HCA miles and 19,445 MCA miles
- Total HCA \& MCA $=40,555$ miles

Gas Transmission Pipeline Ruptures - Potential vs Actual Impact Radius 2017 to present

Year	Location	PipeDiameter(inch)	$\begin{aligned} & \text { MAOP } \\ & \text { (psi) } \end{aligned}$	Pressure at time of Failure (psi)	PIR (ft) Based on MAOP		Impact Area		Pipe Ejected (feet)	Isolation Time (hour: second)	Fire Duration (hour: second)
							Length (feet)	Width (feet)			
2017	Dixon IL	20	800	706	391	367	365	163	-	0:31	3:06
2018	Batesville OH	24	1,440	1,296	629	596	50	50	-	0:00	1:04
2018	Moundville OH	36	1,440	1,280	943	889	250	250	100	0:25	3:05
2018	Hesston KS	26	899	837	538	519	400	200	254	0:02	2:44
2018	Buffalo OK	26	765	751	497	492	110	60	170	1:09	-
2018	Woodruff UT	20	918	780	419	386	143	90	430	1:21	-
2018	Dixon Springs TN	22	773	756	422	418	30	20	75	0:38	-
2019	Caldwell OH	30	936	803	634	586	500	500	-	1:35	14:05
2019	Mexico MO	30	900	889	621	618	437	286	125	1:12	1:31
2019	Hot Springs AR	30	1,000	980	655	648	252	114	306	2:12	-
2019	Danville KY	30	936	925	634	630	704	645	600	1:52	3:07
2019	Artesia NM	20	1,000	880	437	410	100	60	360	3:23	-
2020	Lake Worth FL	18	866	846	366	362	300	50	400	0:25	
2021	Ellsworth KS	30	991	958	652	641	516	344	500	1:29	1:31
2021	Coolage AZ	30	944	863	636	609	600	360	125	2:46	3:01
2022	Uniontown, AL	18	1,200	1,169	431	425	468	160	72	1:26	1:45
2022	Clermont, PA	24	858	854	486	484	500	250	304	0:02	0:22

Thank You

Steve Nanney - PHMSA steve.nanney@dot.gov

