November 2021

CO₂ Pipelines: Delivering a Green Future

Energy lives here"

N. A. Medina

Public & Stakeholder Engagement Manager

ExxonMobil Pipeline Company

A Limited Network of CO₂ Pipelines Has Been Operating in the U.S. for Decades

- More than 5,200 miles of CO₂ pipelines exist
- Transport approximately 80 million metric tons of CO₂ per year from natural and industrial sources
- Nearly all CO₂ is used for Enhanced Oil Recovery
- EOR helps produce more energy and sequester carbon emissions
- Increased interest in creating EOR projects to sequester CO₂

Source: Hart Energy/Rextag

Carbon Capture, Use and Storage Represents a Major Opportunity for the Pipeline Industry

- <u>Win-Win</u>: Opportunity to expand into new business area and to reduce carbon emissions
- Experts claim attaining Carbon goals requires a wide range of emission reduction technologies
- CCUS is becoming recognized as an important element of the overall reduction strategy
- CCUS cannot be realized without a network of gathering and transmission CO₂ pipelines
- Increased attention on CO₂ transport is needed

CCUS ... Should be CCTUS

Source: Labor Energy Partnership, "Building to Net-Zero: A U.S. Policy Blueprint for Gigaton Scale CO₂Transport and Storage Infrastructure," June 2021.

ExonMobil

Opportunity Rests in Gathering Emissions and Transporting Them to Regional Storage Facilities

- U.S. has one of the largest known CO₂ storage capacities in the world
 - Depleted oil and gas reservoirs
 - Deep saline sedimentary formations
 - Deep saline basalt formations
 - Coal seams
- Gulf Coast area has the largest and most economical capacity
- Policy makers envision carbon capture and storage hubs being developed across the country
 - Hubs allow CO₂ sources to form "capture clusters," connected to CO₂ storage sites using strategically-sized, shared infrastructure

Sources: 1. U.S. Department of Energy, NATCARB. 2. ExxonMobil Upstream Research Company, "Evaluation of Practicable Subsurface CO₂ Storage Capacity and Potential CO₂ 4 Transportation Networks, Onshore North America," 2018.

ExonMobil

Estimates Point to a Major Expansion of the CO₂ Pipeline Network

- Projections anticipate needing more than a increase in the size of the CO₂ network by 2050
- CO₂ is shipped long distances at very high pressures in a liquid / supercritical fluid state
- Long distance, high-capacity CO₂ pipelines are typically built to ANSI Class 900 standards
- There are challenges to repurposing natural gas pipelines, typically built to ANSI 600 standards
- Captured CO₂ contains impurities, requiring injection standards and drying mechanisms
- Design, build and operating standards are still being enhanced

Source: Center for Energy and the Environment, Princeton University, "Princeton's Net-Zero America Study, Annex I: CO2 Transport and Storage Infrastructure Transition Analysis," 2020.

As CCUS Is Expected to Grow, So Is the Scale of CO₂ Pipeline Investment

LS. Activation Phase

- \$50 B cumulative investment
- \$2 B pipeline investment
- 10,000 annual jobs

\$175 B cumulative investment\$9 B pipeline investment40,000 annual jobs

<section-header>

\$680 B cumulative investment\$28 B pipeline investment230,000 annual jobs

Source: McKinsey and ERM Modeling for NPC, 2019

ExonMobil

More Pipeline Regulatory Clarity Would Help Development

- Federal safety regulation is clearly established
 - PHMSA regulates the safe transport of CO₂ in a liquid state as a hazardous liquid under 49 CFR 195
 - 49 CFR 192 does not govern CO₂ in a gaseous state because it is neither flammable, toxic or corrosive
- Federal siting, access and rate regulation is lacking
 - > No siting process
 - > No eminent domain authority (except for federal lands)
 - > No tariff rate setting provisions
- Some states have supplemented federal regulation
 - Texas, New Mexico and Louisiana have well established CO₂ pipeline regulatory frameworks covering siting, common carrier status and eminent domain

There Are Issues to Consider As the Opportunities Develop

Safety

- > The safety record of CO₂ pipelines is generally good
- Better understanding of the effects of the potential release of CO₂ is needed
- Construction standards
 - > New standards may be needed for new levels of service
 - > Siting of pipelines will shift from rural to urban areas
- Lack of public awareness / understanding
 - > Potential for misinformation to take hold
- Pipeline regulations
 - Lack of federal siting provisions creates hurdles for pipeline projects

There Is Work to Be Done in Anticipation of the Buildout

- Refine <u>economic case</u> for commercializing CO₂ transport
- Promote <u>public-private partnerships</u> to incentivize the development of pipeline infrastructure
- Activate an education campaign to explain the benefits of the pipeline network
- Seek <u>regulatory clarity</u>
- Reach out to communities along likely corridors
- Continue research into <u>CO₂ pipeline standards</u>
- Create options for compatible <u>odorants</u>
- Develop a <u>CO₂ emergency response training</u> program

