

Know what's **below**

Call before you dig.

PHMSA Office of Pipeline Safety

Hazardous Liquid Transmission –
Understanding the Application of Automatic
and Remote Control Shutoff Valves

Western Region Director
Office of Pipeline Safety Denver

720 963-3160 chris.hoidal@dot.gov

Outline

- Automatic Shutoff Valves, Remote Control Shutoff Valves, Emergency Flow Restricting Devices
 - Code Requirements and specific considerations
- Emergency response
- Montana Governor's Task Force
- Pipeline Safety, Regulatory Certainty, and Job Creation Act
- Concerns
- Considerations

Automatic Shutoff Valve (ASV)

- Electric, pneumatic, or gas powered actuators
- Signals are derived from pipeline sensors, typically:
 - Pressure
 - Flow
- Signals cause automatic closure on set pipeline parameters
- Does NOT require human action for operation

Remote Control Valve (RCV)

- Electric, pneumatic, or gas powered actuators
- Operated from a remote location
- Communication network required
- Operator reviews and evaluates data prior to positioning valve
- RCV introduces human intervention, decision making, and evaluation

Emergency Flow Restricting Device (EFRD)

- EFRD means either:
 - Check valve
 - Permits fluid to flow freely in one direction
 - Contains a mechanism that prevents back flow
 - Remote Control Valve
 - Any valve that is operated remotely
 - Usually operated through SCADA

Current Regulatory Requirements

- Part 194 Response Plans for Onshore Oil Pipelines
 - Worst Case Discharge Calculations
- Part 195 Transportation of Liquids by Pipelines
 - Design
 - Construction
 - Integrity Management

Worst Case Discharge

- §194.105
 - Determine worst case discharge for each response zone
 - Worst Case Discharge is one of the following:
 - (Maximum release time + Maximum shutdown response time) X Maximum flow rate + drainage volume
 - Drainage volume directly affected by valve placement and actuation time
 - Capacity of single largest breakout tank or battery of breakout tanks within single containment

Valve Design Requirements

- §195.116
 - Sound engineering design
 - Compatible to pipeline material and fluid medium
 - Clearly indicates position of valve
 - Marked with manufacturer's data

Construction

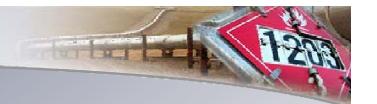
- §195.258
 - Valve must be installed in a location that is accessible to authorized employees
 - Protected from damage or tampering

Construction

- §195.260
 - Valve must be installed at each of the following locations:
 - Suction end of discharge pump
 - Each line entering or leaving breakout storage tank area
 - At locations that will minimize damage or pollution from accidental discharge
 - Lateral takeoff from trunk line
 - Each side of a water crossing that is more than 100 feet wide
 - Each side of reservoir holding water for human consumption

Integrity Management in HCAs

- §195.452
 - General requirement
 - Prevent pipeline failures
 - Mitigate consequences of a pipeline failure in HCAs
 - Risk analysis must identify additional measures to protect the HCA and enhance public safety or environmental protection
 - Additional measures based on identified threats
 - Installing EFRDs are additional measures

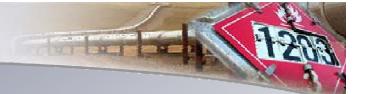


Integrity Management in HCAs

- §195.452
 - Factors to consider when installing EFRDs based on risk analysis:
 - Swiftness of leak detection and shutdown capabilities
 - Type of commodity being transported and leak rate
 - Volume that can be released
 - Rate of potential leakage and potential for ignition
 - Pipeline topography, profile, and terrain
 - Location of nearest response personnel
 - Benefits of reducing spill size

Emergency Response

- Pipeline Emergency Response Forum Washington DC, December 9, 2011
 - Key points:
 - Mitigation
 - Preparedness
 - Response
 - Recovery
 - Enhancing pipeline emergency management involves considering non-IM requirements for ASVs and RCVs



Montana Governor's Task Force

- Joint Study between MT Governor and PHMSA following July 1, 2011 Exxon Mobil crude oil spill into Yellowstone River.
- Study conducted to ensure integrity of petroleum pipelines crossing major rivers in Montana, with a focus on depth of cover and valve placement.
- Evaluate adequacy of pipeline installation, leak detection, and valve placement/actuation at major water crossings

Pipeline Safety, Regulatory Certainty, and Job Creation Act of 2011

- By January 2013 requires a study conducted by the Comptroller General (GAO) of the United States that addresses product release located within an HCA
- By January 2014 requires by regulation the use of Automatic or Remote Controlled Shut-off valves, or equivalent technology, in newly constructed or entirely replaced facilities

Studies

- March 1991 Emergency Flow Restricting Devices Study
 - Required by the Pipeline Safety Reauthorization Act of 1988 PL-100-561
- 1995 Remote Control Spill Reduction Technology: A Survey and Analysis of Application for Liquid Pipeline Systems
 - Model was created to show optimal utilization of EFRDS
 - RCVs cost more
 - Lead to better response time
 - RCV and manual valve optimum spacing are comparable

Rule Making

- September 1978 ANPRM to require installation of ASVs and RCVs in inhabited areas for liquid and gas pipelines. This ANPRM was withdrawn. (43 FR 39402)
- February 1987 ANPRM proposed to convert shutoff valves to ASVs or RCVs; the Department studied the selective use of ASVs and RCVs, but there was no rulemaking. (52 FR 4361)
- May 1989 Notice of Request for Information regarding SCADA, installation of ASV/RCV, costs to convert, valve spacing criteria. (54 FR 20945)
- January 1994 ANPRM soliciting public input regarding a study of safety, cost, feasibility, and effectiveness of using EFRDs in existing and future pipeline systems. (59 FR 2802)
- October 2010 ANPRM issued regarding whether changes are needed to regulations governing on-shore hazardous liquid pipelines. Sought comment on whether to require the installation of EFRDs on existing pipeline systems within HCAs based on risk. (75 FR 63774)
- Note: EFRDs were addressed in IMP regulation 195.452 (i) on December
 1, 2000 under Preventative and Mitigative Measures

Best Practices

- Spill containment around valves vaults, sumps, and leak detection
- Relief bypasses around valves to allow rapid closure and avoid overpressure events
- Inhibit switches or calculated valve transit times in valve actuation to prevent overpressure events
- Installed cameras at critical valve sites
- Solar panels/Nitrogen bottles actuation at sites with no commercial power

Vault Around Mainline Valve

Overpressure Bypass Around Valve

Valve Power in Remote Areas

Operational Concerns

- Control Room Management/Operator Issues
 - Operator's ability to recognize a situation that requires response and required permission to do so
 - Pumping against closed valves
 - An inadvertent closure due to operator error or computer system design
- Improper maintenance
 - Cleaning seats/valve bodies, packing, gaskets, winterization, etc

Improper Maintenance

Improper Maintenance

Other Concerns

- Instrumentation and activation require power in remote areas; may be subject to power outages
- Physical and Cyber security threats
- Fluid Hammer / flow transients
- Detectable Leak size may be too low to trigger activation
- Parallel pipelines and Cross over valves must also be addressed

Considerations for Requiring Additional EFRDs

- Prescriptive requirements for EFRDs used in PHMSA Enforcement cases:
 - Specify other HCAs beyond 100' wide water crossings
 - Limit drain down volume by:
 - Percent volume of daily throughput
 - Absolute Number of barrels that can drain down after pump shutdown
 - Risk-based calculated volume based on commodity and HCA characteristics
- Public Comments to this workshop and proposed study
 - Provide Comments to Registry website

Questions?