PHMSA Pipeline Class Location Methodology Workshop

Wednesday April 16, 2014 Crystal City Hilton Arlington, VA

Phases of Natural Gas Transportation

"UPSTREAM" EXPLORATION AND PRODUCTION

"MIDSTREAM" GATHERING, PROCESSING, TREATING, COMPRESSING

"DOWNSTREAM" TRANSMISSION & DISTRIBUTION

Gathering Pipe by Reported Diameter in Class 1

What requirements apply to onshore gathering lines?

- Must comply with requirements applicable to transmission lines
- Except instrumented, internal inspection devices and integrity management

Class Locations Based on Population Density

Class Location:

- Establishes population density around a "sliding" mile of pipeline
- The denser the population, the more stringent the safety requirements

Higher Class Location Units = More Stringent Regulations

What about Pipeline Pressures?

Design Pressure Formula for Steel Pipe (192.105) P=(2 St/D) × F × E × T

P = Design pressure in pounds per square inchS = SMYS in pounds per square inchD = Nominal outside diameter of the pipe, inchest = Nominal wall thickness of the pipe in inchesF = Design safety factor

Class Location Design Factor: Class 1= 72% Class 2= 60% Class 3= 50% Class 4= 40%

Key Areas in 192 Affected By Class Location

- Design Pressure
- Establishing MAOP (Design & Testing)
- Jurisdiction of Gathering Lines

- Construction
- Compressor Station
 Design & Testing
- Valve Spacing

Key Areas Continued...

- Selection of Media for Testing Pipelines
- Effects of Class Location Change
- Odorization
- Patrol Frequency

- Line Marker Placement
- Depth of Cover Requirements
- Integrity Management (HCAs)

Advantages of Using Class Location

- Consistency
- Familiarity
- Addresses Risk to People
- Demonstrates Compliance
- Cost Benefit

PIR Formula Class 1 Pipeline Pipeline MAOP = **1200** psi & Nominal Diameter = **4** Inches $PIR = 0.69\sqrt{pd^2} = 108$ Feet

* 45 Companies reported 132,586 miles

PIR FormulaClass 1 PipelinePipeline MAOP = 1200 psi &Nominal Diameter = 24 Inches $PIR = 0.69\sqrt{pd^2}$ = 574 Feet

In Conclusion

- We believe class location methodology should be retained, especially for pipelines presently in service.
- If PIR concept is adopted going forward, operators should have a choice.
- Maintenance inspection requirements and intervals should be appropriate for both class location and PIR concepts.

Contact Information

Alice Ratcliffe 817-885-2181 *office* 817-675-7456 *cell* alice_ratcliffe@xtoenergy.com

