Ductile Fracture Prediction in Metals: Applications for Pipelines

1. Research Problem

Material/Weld/Equipment failure/fracture is the reason for 32% of pipeline accidents in the past two decades. Fracture in metals and welds is governed by the inherent defects and stress concentration.

2. Research Objectives

(a) to experimentally characterize the microvoid statistical attributes at the instance of fracture by employing microscopy on the fracture surfaces of steel; (b) to quantify the relationship between the experimentally extracted microvoid features at the instance of fracture, and state of stress and strain; and (c) validate obtained relationship to predict ductile fracture in structural steels.

3. Background

Several existing models predict the fracture strains by tracking material scale damage as a function of stress and strain states. The fracture model parameters are usually not directly calibrated from void growth observations although void growth leads to ductile fracture.

Ravi Kiran Yellavajjala¹ and Surajit Dey² ¹P.I. and Associate Professor, ravi.kiran@asu.edu, SSEBE, Arizona State University. ²Graduate Research Assistant, SSEBE, Arizona State University.

For all

notches

- $0.95 \ \mu m$ to $3 \ \mu m$.
- error.

6. Acknowledgments

This project is funded by the National Science Foundation NSF CAREER Award 2045538.

7. References

- 138.
- Fracture", (accepted for ASCE Journal of Materials in Civil Engineering).

8. Public Project Page https://labs.engineering.asu.edu/dams/

2. Void sizes obeyed normal distribution, & 95 percent of the void radii fell between

3. The relationship between the experimental void size and states of stress and strains provided conservative estimates of fracture strains with ~10% maximum

1. R. Yellavajjala, & Khandelwal, K. (2014). A triaxiality and Lode parameter dependent ductile fracture criterion. Engineering Fracture Mechanics, 128, 121-

2. Dey S., R. Yellavajjala, and Ulven C. (2023). "Experimental Evaluation of Microvoid Characteristics and their Relationship with Stress and Strain for Ductile