TECHNICAL CONSIDERATIONS FOR CO2 PIPELINE TRANSPORT AND THE ROLE OF COMPOSITE CRACK ARRESTORS

Prepared for

2023 R&D Forum

Dr. Aquiles Perez & Richard Hill

09/14/2023

Content

- CO₂ pipeline transport overview
- Two main consideration
- What we know what we don't know GAPS
- Role of composite crack arrestors
- Where do we go from here

Peletiri, S.P.; Rahmanian, N.; Mujtaba, I.M. CO₂ Pipeline Design: A Review. *Energies* **2018**, *11*, 2184. https://doi.org/10.3390/en11092184

Major CO₂-Emitting Facilities, CCUS Projects, and CO₂ Pipelines in the United States

CO₂ Overview

- There are 16 carbon capture sequestration projects and potentially over 80 more in development in the USA
- There are 5200 miles of CO₂ pipelines in USA
- 166 CO₂-EOR operations running
- Currently, there is not a well-defined regulatory oversight for Dense Phase CO₂ transport. Design criteria are based on ASME B31.4/ 49 CFR 195
- Need to achieve over 65,000 miles of pipelines by 2050 to achieve net zero goals in the USA.

Two Main Technical Considerations for CO₂ Transport

- There is a need for a well-defined oversight.
- Two primary technical challenges are:
 - Ensure that line pipes are fabricated with sufficient material toughness to arrest a ductile fracture (CVN, DWTT, QA/QC)... otherwise, ensure the pipeline system is designed against ductile fracture propagation.
 - Ensure CO₂ corrosion does not occur due to water and impurities within the system
 ... Otherwise, ensure the pipeline system is designed with a mitigation/barrier
 under upset conditions or that upset conditions are accounted for as part of the
 design.

When could ductile fracture propagation occur?

The likelihood that an impact occurs at the pipe body rather than a weld section is significantly greater.

When could acid corrosion occur?

The likelihood that acid corrosion occurs is significantly greater under upset conditions than under steady state conditions.

3 NO: 50 °C , 500 ppmv H₂O, 200 ppm NO, 500 b) DeV

nee NO. 500 nm O.

Ductile Fracture Propagation Work (Quick background)

Alternative Fracture Control Methods

Crack arrestor

Figure 12. Leading Edge of Side B Clock Spring Arrester After Test 6-1.

Figure 4-21: Western Specialties Ultra-Wrap A and B-side repair overview post-test

- Crack arrestors or system components that could act as crack arrestors.
- Valve settings, bends, etc., are natural obstructions that can terminate a propagating crack.
- Composite crack arrestors could be part of a field joint installation process for CO₂ pipelines by providing additional hoop constraints to the pipe wall.
- Composite crack arrestor design requirements must be further validated to obtain regulatory approval – especially for dense-phase CO2.
- Field joint specifications are being developed to include composite crack arrestor technology during installation.

INTEGRITY MANAGEMENT PROGRAM PIPELINE CO₂ TRANSPORT

I ndustry Type Direct		Operating Risk – Can we maintain safe operating parameters (pressure temperature, flow rate?)			Mitigation program	Mitigation of Operating Risk -Internal Coatings? -Crack Arrestors? -CRAs	erating Risk ngs? s? mposition itors? set set ion mables
Air Point Capture	Integrity program	Composition Risk - Can we maintain impurity and water content within a safe margin?				Risk -Chemical Inhibitors? -??	
		Upset Conditions - Can we maintain integrity during transient conditions (blowdown/ controlled decompression)?				Mitigation of Upset Conditions -Material Selection -Valve Selection -Welding consumables	
			Monitoring of Operating Risk?				
	Monito	ring program	Monitoring of Composition Risk ?			▲]
			Monitoring of Upset Conditions?				

Current Gaps

- EOS does not account for all potential mixtures from the various capture sources.
 - The EOS allows us to estimate the energy required to arrest a cracksaturation pressure.
 - Some EOS might be under or over-conservative in some scenarios.
 - An initial crack arrestor design methodology applicable to the CO₂ gas phase has been proposed. Validation needs to be performed.
 - An approved methodology and procedure for dense phase CO₂ crack arrestors has yet to be developed
 – part of FJC installation.
 - Repeatability and consistency during the manufacturing process are essential.

Role of composite Crack Arrestors on CO₂ Transport

- It can be considered an added safety consideration, especially as part of the operation management analysis of dense-phase CO2 pipelines.
- It is necessary to evaluate and mitigate potentially hazardous conditions and consider whether to use crack arrestors depending on the class location type, as stated in ISO 136232.

Crack Arrestors – Latest Work

• A methodology for composite crack arrestors has been developed and its promising technology to enhance safety of CO₂ pipelines.

There is plenty of Ongoing Initiatives

- API: SC5-TGLP-WI 4258: CO2 Pipelines
- DNV RP F104
- ISO 27913 should be re-issued soon?

Summary of Material Concerns in CCUS Operations

- General corrosion allowances for new pipe steels in high-purity CO₂ environments
- Effect of impurities on corrosive liquid phase dropout
- Effect of phase separation on material resistance to fracture propagation.
- Corrosion mechanism evolution (uniform corrosion pitting crack initiation)
- Effects of corrosion on design allowances, decompression modeling input
- Ductile to brittle transition temperature and ductile fracture propagation.
- CO₂ transport is moving at a very rapid pace, with fracture control and corrosion mitigation being at the forefront of the technical challenges.

Where do we go from here?

- Consistency and repeatability during the manufacturing process to ensure the pipe material can transport densephase CO2.
- Create a risk classification (I, II, III, IV, V) of CO₂ with impurities based on capture locations such as ethanol plants, refineries, steel production, etc.
- Full-scale testing based on risks:
 - Burst test.
 - Flow loop test.
 - Shock tube test.
- Composite crack arrestors for dense phase CO₂.
- Develop a facility (government) funded for testing and qualification of pipeline equipment for CO₂ transport.
- Other ideas?

Thank you!