
CO₂ Transport Applied RD&D Workshop Report Summary

Carbon Transport and Storage
Office of Fossil Energy and Carbon Management

October 31, 2023

Agenda

- Inaugural workshop took place Feb 21-23 in Columbus, Ohio
- Broad and diverse perspectives shared (e.g., 100+ attendees)
- Participation by various stakeholders including Labor, Industry, Academia, Standards Bodies, NGO's, etc.
- Technical topics discussed included:
 - Ongoing Industry Initiatives
 - CO₂ Impurities
 - Co₂ Specific Leak Detection and Emergency Response
 - Repurposing of Existing Infrastructure for CO₂ Service
 - Developing and Connecting with Other Modes of CO₂ Transport /Intermodal Hubs

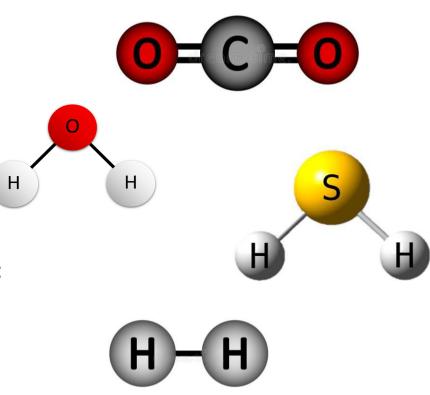
https://www.netl.doe.gov/carbon-management/carbon-storage/transport

Workshop Key Themes

CO₂ Transport Workshop RD&D themes over the next five years

Workshop Key Takeaways

Based on the individual perspectives shared, DOE took away the following with respect to carbon transport:


- <u>Develop a CO₂ transport consortium</u> to coordinate RD&D efforts and facilitate communication among stakeholders;
- Compile and curate information in an open access platform to facilitate gap analyses;
- Accelerate experimental and modeling RD&D efforts to keep pace with the timeline for CO₂ transport demonstration projects and at-scale deployment;
- Create pathways to engage and grow the workforce in an equitable, inclusive, and accessible manner;
- Engage the public in two-way communication.

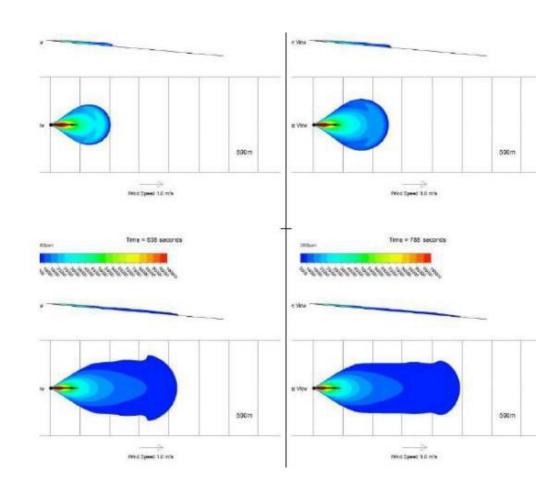
RD&D Area of Interest #1:

IMPACT OF CO₂ IMPURITIES ON ASSET INTEGRITY

CO₂ IMPURITIES MANAGEMENT

- Guide materials selection, standards, and potential regulations by better understanding integrity threats and their evolution over time periods corresponding to asset operational life;
- Determine the effect CO₂ stream impurities has on materials, corrosion, and fluid behavior through testing and modeling;
- Create a testing protocol to complement ongoing work and coordinate experimental and modeling efforts;
- Scale up the size and duration of tests (i.e., small scale to large scale);
- Progress odorant additives applications.

RD&D Area of Interest #2:


CO₂-Specific Leak Detection and Emergency Response Protocols

LEAK DETECTION

- Compile relevant existing research and models, as well as lessons learned from industry, in a centralized open repository;
- Advance computational and sensor technologies specific to CO₂ service.

EMERGENCY RESPONSE

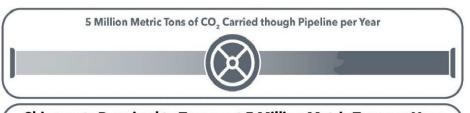
- Advance CO₂ dispersion modeling capabilities to inform emergency response protocols and real-time response;
- Expand understanding of CO₂ exposure health risks;
- Leverage existing organizational models for pipelines as templates for founding a Center for CO₂ Safety.

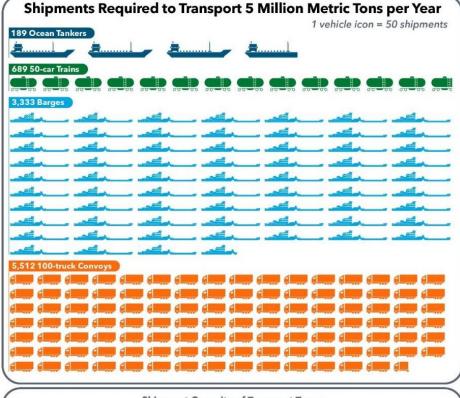
RD&D Area of Interest #3:

Repurposing of Existing Infrastructure for CO₂ Service

REPURPOSING INFRASTRUCTURE

- Compile and efficiently leverage existing information, especially component materials and lessons learned from industry
- Conduct gap analyses and related RD&D to address materials standards
- Develop LCA and TEA tools to support repurposing infrastructure
- Create checklists of considerations to guide repurposing efforts


RD&D Area of Interest #4:


REPURPOSING OF EXISTING INFRASTRUCTURE FOR CO₂ SERVICE DEVELOPING AND CONNECTING WITH OTHER MODES OF CO₂ TRANSPORT & INTERMODAL HUBS DEVELOPMENT

- Many U.S. sources produce small amounts of CO₂ at the individual level but collectively produce approx. 128 million MT of CO₂/year;
- Develop of TEA and LCA tools across various scales and transportation systems.

CONNECTION

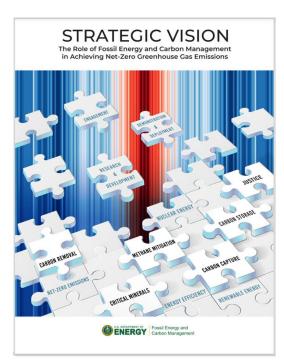
- Support development of intermodal CO₂ carriers compatible with transportation via truck, rail, barge, or ship;
- Improve metering of CO₂ for monitoring, reporting, and verification purposes to accurately track CO₂ storage levels.

Visual comparison between freight modes to transport 5 million metric tons of CO2. This annual volume is approximately equal to total CO2 emitted from one 680 MW power-generation station.

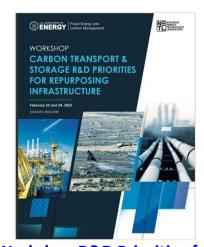
Funding Pathways

DOE FECM Field Work Proposals (FWPs)

Enables DOE FECM to directly allocate funds to DOE FECM national laboratories and facilities, including when the laboratory applicant is a partner on a DOE FECM proposal submitted by a different entity

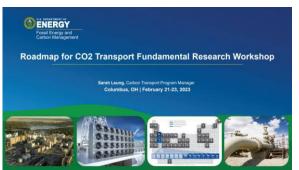

 DOE FECM Cooperative Agreements advertised through Funding Opportunity Announcements (FOAs)

Enables transfer of DOE FECM funds to grant recipients. The Carbon Capture Technology Program, FEED for CO₂ Transport (DE-FOA-0002730) is an example FOA funded by BIL


DOE FECM Cooperative Research and Development Agreements (CRADAs)

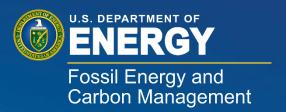
Enables the DOE FECM national laboratories and one or more parties (e.g., industry) to collaborate on RD&D efforts in the DOE FECM mission space. An example call is the 2021 H2@Scale Laboratory CRADA Call. H-MAT Consortium is the product of a CRADA

Resources and Engagement Opportunities



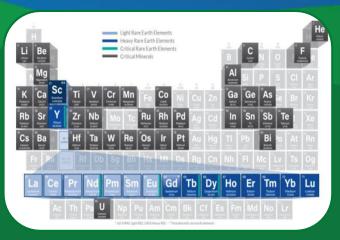
FECM Strategic Vision

Workshop R&D Priorities for Repurposing Infrastructure


DOE's Roadmap for CO2 Transport
Fundamental Research Workshop
(2023)

Industrial Decarbonization Roadmap

<u>Carbon Management Collegiate</u> <u>Competition</u>



Questions?

Kevin.Dooley@hq.doe.gov

