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Hydrogen Transportation using Existing 
natural gas pipeline

◼ Hydrogen can be transported in three ways:

- pure hydrogen through dedicated pipeline

- pure hydrogen through existing natural gas (NG) pipeline

- mixture of hydrogen and NG through existing
infrastructure

◼ Transporting hydrogen requires modifications to:

- valves

- meters

- compressors, and others

◼ Several advantages in using existing infrastructure such as:

- wider geographic reach

- high capacity

- interconnected

Image source (top): Siemens Energy



Current status and motivation

◼ Rapid growth of related study in recent two decades

◼ US is relatively behind the worldwide infrastructure research and 
operational demonstration of hydrogen transport

◼ Quickly catch up via automatically knowledge discovery and 
information fusion 
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Identified critical gaps and objectives

Research Question 1: How to include additional critical factors affecting the

pipeline infrastructure for hydrogen transport, such as hydrogen embrittlement for

corrosion and reduced fatigue performance of heated affected zone (HAZ)?

Research Question 2: US is behind the worldwide hydrogen transport research

(see Fig. 1). How to catch up the progress by mapping worldwide projects and

references?

Research Question 3: Adverse effect of hydrogen will deteriorate materials. How

to develop new NDE capabilities for crack detection in situ and optimize the

inspection frequencies to accommodate this new challenge?

Research Question 4: Existing pipeline infrastructure has the potential to

contribute to the emerging fuels. How to automate the knowledge transfer from

past experiences to the new application of hydrogen transportation?
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Proposed tasks
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Accident Report Analysis and Event Extraction 

◼ Goal: Read from the existing NTSB pipeline accident 
report to understand the causal relationship between 
events and accidents. Transfer knowledge from historic 
accidents to hydrogen transportation

◼ Proposed a three-step approach

◼ Step 1: Automatic translate the accident report to accident 
events

◼ Step 2: Causal Discovery of Accident Events (Understand the 
causal relationship between events)

◼ Step 3: Use transfer learning to hydrogen event data.

Event Extraction, Standardization, 
and  Causation discovery

Transfer learning for Hydrogen transportation



Example of Event Trees for pipeline failures 

Event Causation Learning 

◼ Problem of Traditional Fault Tree Analysis

◼ Static Tree and Reliability/probability is not updated with 
real-time observations

◼ Need to manually specify the fault tree

◼ Proposed: Causal learning from spatio-temporal events 
using Hawkes Process and Bayesian Network
◼ Bayesian Network is used to represent the relationship between 

different vents

◼ Hawkes Process is used to learn the causation of the spatio-
temporal events 

◼ We will utilize the Hawkes process to learn the causation 
between events for both traditional gas and hydrogen transport

Event Embedding Failure Tree



NDE for Pipeline Inspection
Structured lightMFL, EC, PEC

Laser projector as source, CMOS
camera as detector, R: inner diameter of 
pipe wall, d: distance between source 
and detector, Θ: angle of projection 
from source, deformation in red laser ring
due to defect



Automated data processing and precursor 
identification – AI based techniques

AA module CM module

Column (a): Feature maps of different layers in CNN.
Column (b): Features expanded to higher dimension by independent linear mapping
Column (c): Element wise multiplication to model inter layer interaction

CNN( Convolutional Neural Network)
Hierarchical Bilinear pooling (HBP)



Data Quality Assessment & Enhancement

Problem: One of the biggest hurdles to integrating AI with NDE for pipeline inspection 
applications is the data limitation challenge where large volumes of training data is not 
available. 

Our Solutions: In this project, we propose two AI techniques to tackle this challenge. These 
two techniques aim to tackle the challenge from two complementary perspectives.

Technique 1: Data Augmentation (DA)
• In modern AI systems, data augmentation (DA) is an effective technique to increase 

both the amount and diversity of training data by applying augmenting operations on 
the original data samples in the training set. 

• We propose to replace the manual design process with an automated process to find an 
effective data augmentation policy for the task of pipeline inspection.



Data quality assessment for pipeline 
integrity management
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Quality Measure Suggested Enhancement Technique 

Accessibility Techniques 1 and 2 

Timeliness Data recollection 

Relevance Data recollection 

Integrity Technique 3 

Completeness Technique 3 

Uncertainty Data recollection 

 

1. Accessibility: Accessibility is measured by the cost of obtaining information

2. Timeliness: Timeliness is determined by whether the data is available at the time it is needed

3. Relevance: Relevance is gauged by whether the data is related to the task of interests

4. Integrity: Integrity is measured by whether the data is accurate and consistent

5. Completeness: Completeness relates to whether all required data is present

6. Uncertainty: Uncertainty refers to whether the variability of the data is acceptable for the task of interest



Overall demonstration and validation

Bayesian causal 
network

Failure risk 
prediction
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data
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Case study: hydrogen impact on material 
strength - 1
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Index 1 2 3 4 5 6 7 8 9 10 11 12 

Variable C Mn P S Al Cr Cu Mo Nb Ni sSi Ti 

Index 13 14 15 16 17 18 19 20 21 22 23  

Varible V B N PL Hod GS GSsqrt GSsqrtneg ND WT ST  

 

Bayesian network 1 Bayesian network 2

Prediction using 

Bayesian network 1

Prediction using 

Bayesian network 2

Two Bayesian network can be learned from the same data 

depending on the modeling approach

Automated causation discovery?

Two Bayesian networks provide different 

prediction accuracy/errors

Quality Assessment?



Case study: hydrogen impact on material 
strength - 2
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◼ Hydrogen molecules adsorb on metal surface to form atomic hydrogen

◼ Atomic hydrogen intrude between crystal lattices causing Hydrogen Embrittlement

◼ Severity of hydrogen embrittlement depends on:

i) gas pressure

ii) hydrogen concentration in mixture

iii) localized concentration of hydrogen at stress risers, and others



◼ Manifestation of hydrogen embrittlement is enhanced susceptibility to fracture

◼ Hydrogen reduces:

i) tensile strength

ii) ductility

iii) fracture toughness

iv) corrosion resistance

◼ Hydrogen accelerates fatigue crack propagation

◼ Materials become susceptible to time-dependent crack propagation in hydrogen environment

Mahajan et al, “Tracking hydrogen embrittlement using short fatigue crack behaviour of metals” , Holm et al, “Effect of hydrogen on mechanical properties and fracture of carbon steel” ; Image source: Somerday et al, “Effect of hydrogen gas on steel vessels and pipelines” , Vergani et al,

“hydrogen effect on fatigue behavior of steel”

Case study: hydrogen impact on material 
strength - 3



Case study: hydrogen impact on material 
strength - 4

◼ Bayesian updating: update the belief of 
“existing knowledge” given “new information”

Thomas Bayes
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Case study: hydrogen impact on material 
strength – 5

Pipe mapping demonstration for a corroded metallic pipe 
using the RTAB-Map package, that performs RGB-D 
Simultaneous Localization & Mapping (SLAM)

Wired RGB-D camera that 
captures pipe wall at 

1280x720 pixels and 30fps.

Machine learning-based 
detection and quantification



Case study: hydrogen impact on material 
strength - 6
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Case study: hydrogen impact on material 
strength - 6
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◼ The changed crack growth curve 
would lead to change in transition 
matrix:
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◼ The changed transition matrix will 
affect the maintenance suggestions 
for certain group of pipes



◼ Guide and train graduate students at ASU/MSU in pipe integrity assessment and risk 
mitigation; 

◼ Leverage existing undergraduate research programs at ASU/MSU to include pipe 
industry research as part of the curriculum and potential areas of professional interest 
for future engineers; 

◼ Enhance ASU courses (MAE 523 Fracture Mechanics and MAE 548 Probabilistic Methods 
for Engineering Analysis and Design) based on results and insights derived from this 
research; 

◼ Invite industry experts (see support letters) to deliver seminar/workshops to 
undergraduate/graduate students on challenges and opportunities in the gas and 
pipeline industry; 

◼ Encourage involved students to apply for internships at USDOT and related industry to 
gain practical experience and engage in potential technology transfer activities based 
on this work. 
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Educational Objective



◼ PI: Dr. Yongming Liu, co-PI: Dr. Hao Yan, ASU

◼ Responsible for the overall progress of the project

◼ Lead research activities on automated knowledge discovery, Bayesian causal modeling, quality
assurance, maintenance planning

◼ Advise student research

◼ Co-PIs: Dr. Yiming Deng, Dr. Mi Zhang, Dr. Lalita Udpa

◼ Lead research activities on NDT techniques, quality assurance, and AI-assisted data analytics

◼ Advise student research

◼ Technical Advisory Panel (TAP) – PRCI: Gary Hines, Gary Choquette, Jeff Whitworth;
GTI: Ernest Lever; EWI – Tom McGaughy

◼ Provide comments and suggestions on the suitability and feasibility of the proposed study

◼ Provide in-kind support for the proposed project, if possible (e.g., sharing inspection report/data)
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Project Personnel 



THANK YOU
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