## **Pipeline Research Council International**

### **PRCI CO<sub>2</sub> Task Force**

Project ALT-1-6: Pipeline Transportation of CO<sub>2</sub> – SOTA Review, Gap Analysis and Future Project Roadmap



LEADING PIPELINE RESEARCH

Rick Noecker, Ph.D. Materials Integrity Principal Engineer ExxonMobil Technology & Engineering Company **RINA Consulting - CSM** ALT-1-6 Contractor

October 2023

## Pipeline Research Council International is...

## PIPELINE

- Natural gas
- Crude oil & petroleum products
- Biofuels
- Hydrogen/renewable natural gas
- CO<sub>2</sub>
- Related facilities

# COUNCIL

- Forum for ideas & opportunities
- Peer-based
- Industry-driven
- Source of research inventory

RESEARCH

Knowledge
Technology
Deployment & transfer
Innovation

## INTERNATIONAL

Asia
Australia
Europe
Middle East
North America



### **Operator Members**







### **Associate Members**





### CHINA PETROLEUM PIPELINE ENGINEERING CO., LTD.







5

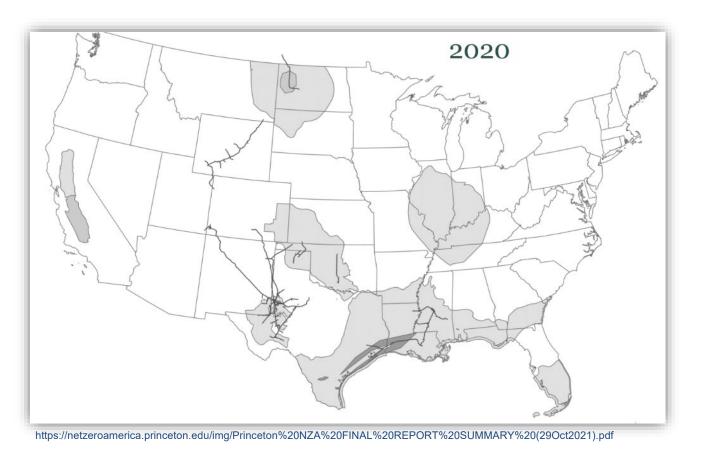
## **Technical Program Associate Members**

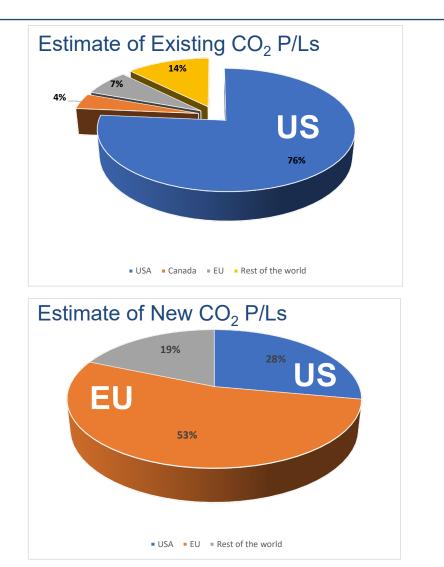




#### Content





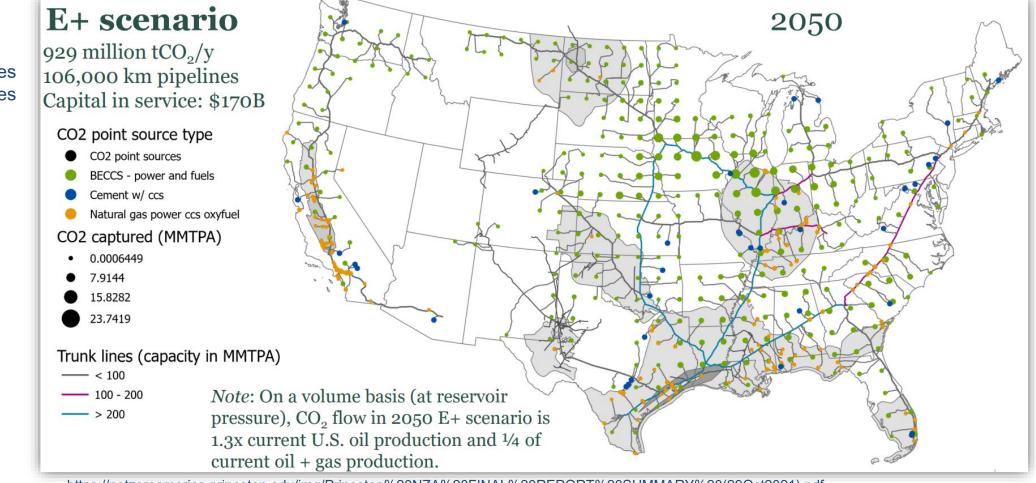


- The "Why" for ALT-1-6: continuous safety improvements as infrastructure expands
- Diversity of involvement in this effort
- SoW and Tasks
- Roadmap of Priorities
- Organization



## The "Why?": Potential Large Increases in CO<sub>2</sub> Pipelines

- Currently ~6,000 miles of CO<sub>2</sub> pipelines globally
- ~5,300 miles of CO<sub>2</sub> pipelines in USA








## The "Why?": Potential Large Increases in CO<sub>2</sub> Pipelines

NOTES: E+: high electrification

~13,000 miles of trunklines ~53,000 miles of spur lines



https://netzeroamerica.princeton.edu/img/Princeton%20NZA%20FINAL%20REPORT%20SUMMARY%20(29Oct2021).pdf



## Level of Involvement

- Over 75 individuals involved representing over 40 organizations.
- Organization types consisted of
  - 19 Operators (4~Global)
  - 4 Government Entities
  - 3 Pipeline Industry Organizations
  - 2 Universities
- Engagement with the following performing research in CO<sub>2</sub>
  - DOT
  - DOE
  - UK HSE
  - Texas A&M
  - Colorado School of Mines



10

#### SoW and Tasks



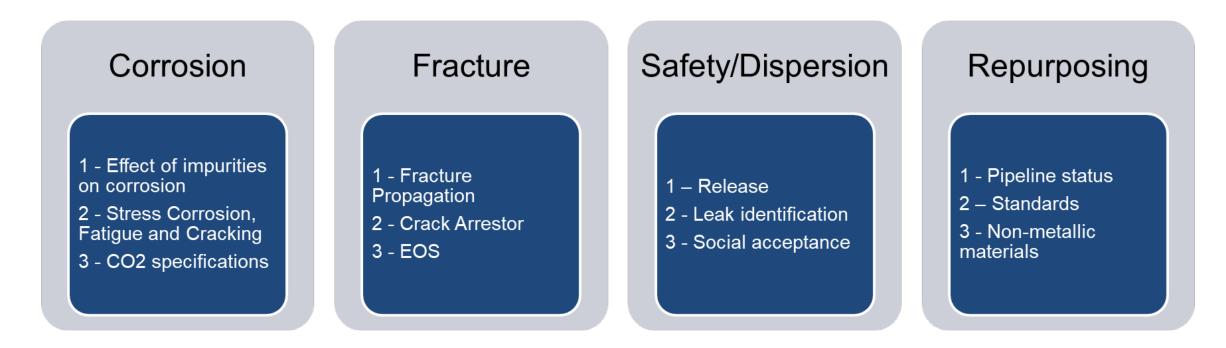
www.prci.org

Development of a clear roadmap which, through clearly defined projects and associated objectives, will enhance the knowledge base for safe and reliable transport of anthropogenic  $CO_2$  by pipelines in any fluid state of matter (e.g. gas, liquid, etc.).

The roadmap was performed by performing an exhaustive State of the Art (SOTA) review, technology mapping and gap analysis.

#### Task 1 – Literature review

- Task 1.1 Mapping of current CO2 pipelines
- Task 1.2 SOTA analysis of existing data
  - Corrosion
  - Fracture
  - Safety/Control Dispersion
  - Re-purposing
- Task 2 Gap analysis


Task 3 – Roadmap proposing future R&D projects to address gaps



### **Prioritization:** CO<sub>2</sub> workshop at EFS June-23 (Orlando)



Groups were formed to review the individual poll results and present their own priority lists, which were then combined to get the top three topics for each area





#### Roadmap of Priorities: Corrosion



#### Priority on the investigation of trace elements on corrosion

| Gap                                                                                                                                                                                                          | ldea                                                                                                                                                                        | Work type                | Technical impact | Cost   | Time   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|--------|--------|
| Corrosion mechanism – Understand<br>which mechanisms are relevant and<br>when                                                                                                                                | Lab work e.g., electrochemical methods, autoclave testing, to improve understanding of mechanisms.                                                                          | Lab testing              | Medium           | High   | High   |
| Improve experimental results                                                                                                                                                                                 | Lab work with autoclaves to create database of<br>experimental data (with verified trace element<br>levels) for different trace element scenarios and<br>operational cases. | Lab Testing              | High             | High   | Medium |
| Enhance corrosion rate prediction<br>capability for different scenarios i.e.<br>during water drop out (normal and upset<br>conditions) or in the presence of<br>condensed acids during pipeline<br>operation | Modelling + experimental work with autoclaves to<br>validate models for corrosion rate due to<br>condensed acids and during water drop out.                                 | Modelling/Lab<br>Testing | High             | Medium | High   |
| Develop data on possible preferential internal corrosion of welds exposed to the CO <sub>2</sub> stream                                                                                                      | Experimental work with autoclaves to assess corrosion of welds due to water drop out and from condensed acids.                                                              | Lab Testing              | High             | Medium | Medium |
| Develop guidance on the risk of acid<br>condensation for different trace element<br>combinations in different pipeline<br>operating conditions                                                               | Develop a risk assessment tool that identifies the<br>highest risk combinations of impurities leading to<br>corrosion.                                                      | Modelling                | High             | Medium | Medium |





www.prci.org

#### Priority on the investigation of fracture propagation

| Gap                                                                                                              | Idea                                                                    | Work type                        | Technical impact | Cost   | Time   |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|------------------|--------|--------|
| Extend the range of applicability of the empirical methods (cf. DNV-RP-F104)                                     | Full-scale tests in larger/smaller diameters<br>and higher/lower grades | Full Scale Testing               | Medium           | High   | High   |
|                                                                                                                  | Laboratory-scale tests to characterise materials                        | Lab Scale Testing                | Medium           | Low    | Medium |
| Improve (or replace) the Two Curve Model;<br>improve numerical (finite element)<br>modelling                     | Develop alternatives (modified or reformulated) to the Two Curve Model  | Desk Study/<br>Modelling         | Medium           | Medium | High   |
|                                                                                                                  | Develop alternatives to the Charpy V-notch impact energy                | Lab Scale Testing/<br>Desk Study | Medium           | Medium | High   |
|                                                                                                                  | Develop numerical modelling to (partially) replace full-scale tests     | Modelling                        | High             | Medium | High   |
| Full-scale test(s) with CO <sub>2</sub> in the gas<br>phase, to validate the Two Curve Model (or<br>other model) | Full-scale test(s) with $\text{CO}_2$ in the gas phase                  | Full Scale Testing               | Medium           | High   | Medium |

© 2023, Pipeline Research Council International







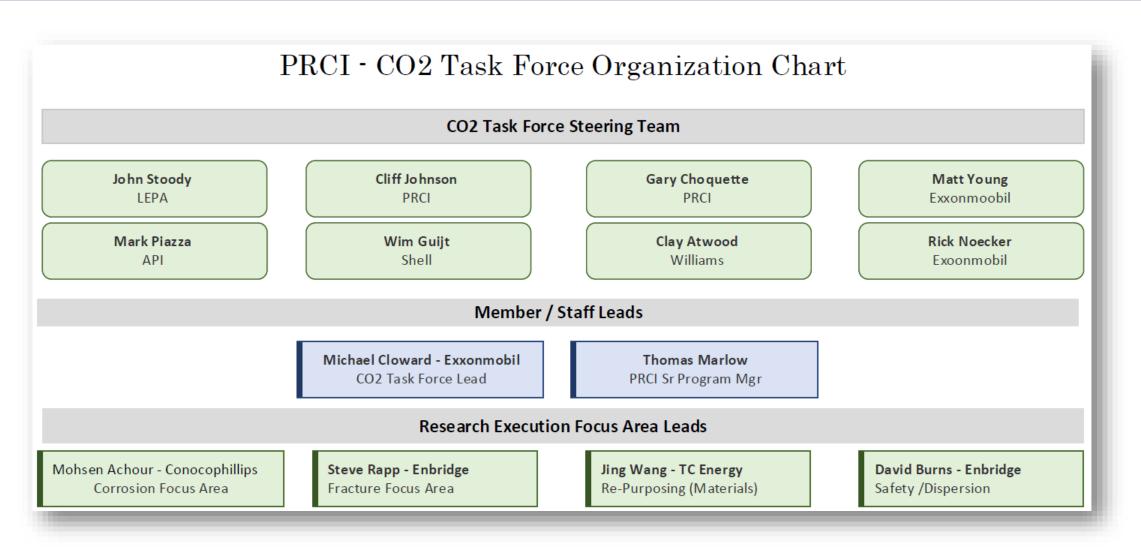
#### Priority on the investigation of release

| Gap                       | Idea                                                                                                                                                                                | Work type                         | Technical impact | Cost   | Time   |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|--------|--------|
| Improve release modelling | State of the art of CO <sub>2</sub> dispersion models and relevant validation tests                                                                                                 | Desk study                        | Medium           | Medium | Medium |
|                           | Identification of the most appropriate CO <sub>2</sub> dispersion models considering phase and terrain specific data                                                                | Modelling                         | Medium           | Medium | Medium |
|                           | Improvement of the combination of integral dispersion modelling with topography and terrain data                                                                                    | Modelling                         | Medium           | Medium | Medium |
|                           | Evaluation of the impact of pipeline operating conditions (Pressure, Temperature, etc.) on the expected CO <sub>2</sub> hazardous distances and pipeline stress design requirements | Desk study                        | Medium           | Medium | Medium |
|                           | Develop better release modelling (3-phase) and testing                                                                                                                              | Modelling                         | Medium           | Medium | Medium |
|                           | Better $CO_2$ -fluid interaction modelling (H <sub>2</sub> O acidification) for offshore and testing                                                                                | Modelling / Full Scale<br>Testing | Medium           | High   | High   |
|                           | Comparative risk analysis between different failure modes of CO <sub>2</sub> pipeline (single release point vs crack arrestor solution)                                             | Modelling / Full Scale<br>Testing | Medium           | Medium | Medium |



### **Roadmap of Priorities: Repurposing Pipelines for CO<sub>2</sub>**




Priority on the investigation of pipeline status

| Gap                                             | ldea                                                                                                 | Work type                 | Technical impact | Cost | Time |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|------------------|------|------|
| How to assess existing pipeline for repurposing | Develop criteria and testing for<br>assessing pipeline materials by era of<br>installation           | Desk Study/Lab<br>Testing | Medium           | High | High |
|                                                 | Create a database in which<br>materials/weldments are grouped and<br>data can be used as a reference | Desk Study/Lab<br>Testing | Medium           | High | High |



# Organization

LEADING PIPELINE RESEARCH





and a big thank you to the RINA team and Ninth Planet (Andrew Cosham) for their commitment to the project



**Pipeline Research Council International** 

Rick Noecker, Ph.D. ExxonMobil Technology and Engineering Company rick.noecker@exxonmobil.com