

Implementing Technologies -Challenges and Success Stories

Dennis Jarnecke – Sr. Director of R&D

DOT PHMSA R&D Forum | October 31, 2023

GTI Energy Overview

Serving the Energy Industry Since 1941

- GTI Energy is a leading research and training organization focused on developing, scaling, and deploying innovations that support low-carbon, low-cost energy systems.
- Our energy solutions transform lives, economies, and the environment.
- Technology development focus on safety, improving efficiency, and reducing emissions
- Research Facilities
 - 18-acre campus near Chicago
 - Laboratories in Agoura Hills, CA & Davis, CA
 - Pilot and demo facilities worldwide

MOVE

STORE

SOURCE

MAKE

GTI's Energy R&D Program

ERGY COMMISSION

- GTI has an <u>expanding R&D portfolio</u> focused on industry priorities:
 - -Safety, Integrity, Reliability, Operational Efficiency, and the Environment
- <u>Collaborative R&D efforts</u>:
 - -Highly cost effective
 - Leverages collective intelligence and experience of funders to develop the best possible solutions

Operations Technology Development

Enhancing Safety Through Adoption of Residential Methane Detectors

- RMDs are commercially available however there is low customer adoption
- Extensive laboratory testing of commercially available RMDs
- National pilot study was conducted to collect performance data in various residential settings

Recent NTSB findings have recommended the use of residential methane detectors Improve Accuracy and Reliability

• Work collaboratively with manufacturers to ensure commercial products deliver safety enhancement expectations for the gas industry

Adoption of Codes and Standards

- NFPA code for RMD use and installation
- Modify existing UL 1484 standard with emphasis on lower detection limit
- Certification through International Code Council

Enhanced Awareness and Education

 Continue stakeholder education and outreach and develop formal advocacy plans

Product Advancement

 Determine optimal placement of detectors based on U.S. building construction practices and typical ventilation effects

Con Edison Efforts

Detect > AMI Enabled Natural Gas Detectors

- Company asset
- Battery powered 7 yrs.
- Certified to UL 1484
- 10% LEL alarm (0.5% gas-in-air) exceeding UL 1484 minimum alarm requirement!

Natural Gas Detectors (RMDs)

Residential Natural Gas Detector Program at GTI

- Extensive product testing
- Consumer Behavior Study
- National pilot field trials with various operators
- Modified standards to meet industry needs

- Con Edison initiate program in New York and was successful due to:
 - Support from the top, internal champions, proper planning, etc.

Tracking & Traceability

Funded from OTD and with industry support - created unique identifier for distribution asset tracking and traceability

- ASTM F2897-11a
- Manufacturer implementation through barcoding
- Purchasing Specification Guidelines for Barcode Marking
- Continued industry and OTD funded initiatives to assist with implementation
- Created Locusview to support Utility implementation and provide a necessary tracking & traceability service for the industry
 LOCUSVIEW

Character	Source	Description of	Character	Information
Number		Information	•	
1	www.componentid.org	Name of component	A	Corresponds to list on
2		manufacturer	C	www.componentid.org
3		Information which can	5	Correspondents the mfr
4	Component	help ascertain relevant	b	Corresponds to the mig
5	Manufacturer's lot code	traceability information	а	INT NUMBER INPUT OF
6		upon request	n	1234567
			1	
7	Component production	Date of manufacture of	0	Corresponds to
8		given component	6	production date of
9	date code per 5.3		С	1/4/2010
10	Component material type	Material used for	В	PE 2708
	per l'able 3	component		
11	Component Type per	Component type	8	Electrofusion tapping tee
12	Table 4		F	with a stab outlet
13		Component size	2	Corresponds to size code
14	Component size per 5.6		m	of 2" IPS SDR11 x 1" IPS
15			Х	SDR11
		1		
16	www.componentid.org	Reserved for future use	0	Default value

Keyhole Technology – an implementation program

- Method of viewing or working on underground utilities through small holes or "keyholes" (minimally invasive excavation)
- Combination of coring, vacuum excavation, and long-handled tooling

Keyhole Technology – an implementation program

- A long running program at GTI to support the implementation of keyhole construction methods (minimally invasive excavation)
- The keyhole program assisted with implementation of Keyhole by:
 - Communicating with the industry through industry events & webinars
 - Creating procedures and sharing of information
 - Performing demonstrations and assisted with training
 - Helping to develop tooling and procedures to meeting needs
 - Assisting with Jurisdictional acceptance
 - and much more!

Natural Gas Safety Devices

• What Can Happen to "At Risk" Meters and Other Aboveground Piping?

Breakaway – Shut off Device Vehicular Impacts and Falling Snow and Ice

- Breakaway disconnect/shutoff can be easily installed to protect meter sets and other above ground piping.
- Reduce risk from vehicle collision, seismic events, falling ice & snow, etc.

Features & Benefits

Ideal For Any High-Risk Meter Sets

- High-Traffic Areas
- High-Snow Areas
- Installation in addition to bollards or where they aren't practical

Immediately seals in the event of a hard impact

HaloValve Now Commercially Available

Halo Valve

- <u>www.HaloValve.com</u>
- Available in ³/₄" and 1" diameters of various lengths and end configurations
- High and Extra-high Pressures

However...

• <u>49 CFR 192.353</u> requires each meter and service regulator to be protected from damage, including vehicular damage that may be anticipated.

High Pressure Plastic Pipe – PA11 & PA12

PA11 & PA12 Operating considerations... PA11

- Can operate up to 250 psig
- Coil and Stick pipe available
- Diameters up to 6-inch
- Uses same equipment that you already use for PE

PA11 & PA12 Benefits...

- Lower installation costs compared to steel piping systems
- Eliminates maintenance costs due to corrosion protection
- Similar benefits of using PE pipe but can now be extended for applications up to 250 psig

High Pressure Plastic Pipe – PA11 & PA12

- Over the past 50 years, the nat. gas distribution has transformed from a near-exclusive metallic distribution piping network to a near-exclusive thermoplastic piping distribution network.
- This transformation has saved US natural gas utilities more than \$10 Billion in installation and maintenance costs.
- GTI conducted a comprehensive research program to validate PA11/12
- Procedures and standards were developed and implemented (ASTM)
- Numerous installations "on system" under Special Permits approved by the Department of Transportation and State Commissions.
- CFR 192 Limitations for the use of plastic pipe to no more than 100 psig

Barriers to Implementation of New Technology

Before you can get the benefits of adopting new technology in business, you have to overcome some of these challenges.

- Legacy culture thinking/Reluctance to change in staff and management
- Staff untrained on how to use new technology
- Price and time to procure the new tools and technology
 - Embracing new technology costs money and takes time
- Plan for new technology implementation is ineffective or missing altogether

Change Management

Successful change management can ensure smoother transitions, minimize resistance, increase engagement and improve the overall effectiveness of new systems and processes.

- Clear communications
- Employee involvement
- Agile approach
 - Implement changes in smaller, manageable stages
- Leadership support
 - Demonstrate the commitment to change

Futuristic Technology

• Did you know that in the early 1900s 1/3 of all vehicles on the road were electric?

What went wrong?

- They started to quickly disappear around 1920 with the introduction of petrol and Henry Ford.
- Ford Model T, the right vehicle at the right time.

1990's – Electric Vehicle Flop

GM's EV1 Electric Car

- The EV1 was the first mass-produced electric vehicle by a major automaker.
- A total of 1,117 EV1's were produced and GM pulled them back from customers and crushed them.
- CARB mandate requiring automakers produce % of emission free cars
- Was the first mass-produced electric car simply ahead of its time?

solutions that transform

Questions / Comments

GTI Energy develops innovative solutions that transform lives, economies, and the environment

Dennis Jarnecke Sr. Director R&D djarnecke@gti.energy 847-768-0943

