Odorization technology # For improved CO₂ onshore transport safety Pipeline Safety Research and Development Forum 2023 Contact: <u>jean-benoit.cazaux@arkema.com</u> Gas odorant Technical Manager #### CARBON NEUTRALITY OBJECTIVES AND CARBON CAPTURE → IPCC scenario 1,5°: toward Carbon Neutrality 2020 → 2050 Emission CO_2 ~40 Gt/y \rightarrow ~6 Gt/y Absorption $CO_2 \sim 0 \text{ Gt/y} \rightarrow \sim 6 \text{ Gt/y}$ Need for increase development of Carbon reduction initiatives such as CCUS #### CARBON NEUTRALITY OBJECTIVES AND CARBON CAPTURE #### PIPELINE OF COMMERCIAL CCS FACILITIES BY CAPTURE CAPACITY Global CCS institute data The capture capacity of facilities excludes: - Transport and storage-only facilities - Suspended operations - Announced facilities Data through 1 April 2023 Only ~50 MTA of CCS capacity is operational today. If all projects proceed, society will experience a 7x growth rate through 2030 but will be 3x short of the pathway needed to achieve IEA Net Zero Emissions 2050 Scenario. We need to identify enablers for exponential acceleration. **EXONMobil** 1. CCS Project data based on Wood MacKenzie., 1Q23 CCUS Market Tracker | 2. IEA World Energy Outlook 2022 # CCUS DEVELOPMENT CONSEQUENCES → Developping infrastructure for Capture, Transport and Storage in wide variety of regions in NA to connect large emitters (Oil/ Energy / Agro / Ethanol/ Steel/ Cement) to storage locations #### CCUS is potentially as important to the 10 years as shale and LNG have been to the last 10 years Source: Rystad Energy CCUS Dashboard, May 2023 - \rightarrow CO₂ transportation will cease to remain limited to «remote locations» and «short distance» direct injection for EOR to be closer to population. - → Increase of CO₂ transportation associated risks (corrosion, leakage, asphyxiation) # INCREASED RISKS OF ACCIDENTS SUCH AS THIS ONE Feb 2020: GeoHazard → pipeline rupture, 350 m³ liquid CO₂ released (385 mt), vaporized and plume heading to Satartia town: 49 people injured (intoxication) and 250 people evacuated Figure 2: Vehicle is Parked on HWY 433 - The White is Ice Generated by the Release of CO₂ - The Blue Arrow Points North (Aerial Drone Photograph Courtesy of the Mississippi Emergency Management Agency) Figure 6: Topographical Map Showing the Delhi Pipeline (Green) and Denbury's Buffer Zone (Red) on Either Side of the Pipeline and the Proximity to Satartia (Blue Star Indicates the Rupture Site) Odorized CO_2 due to presence of H_2S and other impurities (geological source of CO_2) \rightarrow enabled detection by public even though the cloud had moved away from pipeline Odorization technology ### INTRODUCTION TO ODORIZATION TECHNOLOGY AS APPLIED TO NATURAL GAS - → Why odorization: to detect leakages for dangerous odorless gases/liquids to protect the population against leakage consequences - → Odorant characteristics (cf ISO 13734): - Strong odor at low concentration - Distinctive « gassy » smell - Non toxic - Stable during storage and use with gas/liquid to be odorized #### Main odorants used for natural gas: - Europe/China/Maghreb/Singapore: Pure THT - Americas/Middle East/Australia: TBM based blends - EM not used but may be naturally present in nat gas Table A.1 - List of chemical and physical properties of pure sulphur compounds | Sulfur compound | Formula | Molar
mass
g/mol | Boiling point
°C | Freezing point °C | Density
(at 20 °C)
g/cm³ | |---|--|------------------------|---------------------|-------------------|--------------------------------| | Sulfides (thioether) | | | | | | | Dimethyl sulfide (DMS) | CH₃SCH₃ | 62,14 | 37,3 | -98,3 | 0,848 3 | | Methyl ethyl sulfide (MES) | CH₃SC₂H₅ | 76,16 | 66,7 | -105,9 | 0,842 2 | | Diethyl sulfide (DES) | (C ₂ H ₅) ₂ S | 90,19 | 92,1 | -103,9 | 0,836 2 | | Tetrahydrothiophene (THT) | C₄H ₈ S | 88,17 | 121,0 | -96,1 | 0,998 7 | | Mercaptans (thiols) | | | | | | | Methylmercaptan (MM) ^a (methanethiol) | CH₃SH | 48,11 | 5,9 | -123 | 0,866 5 | | Ethylmercaptan (EM) ^a
(ethanethiol) | C₂H₅SH | 62,14 | 35,1 | -147,8 | 0,831 5 ^b | | n-Propylmercaptan (NPM)
(1-propanethiol) | C₃H ₇ SH | 76,16 | 67 to 68 | -113,3 | 0,841 1 | | iso-Propylmercaptan (IPM)
(2-propanethiol) | (CH ₃)₂CHSH | 76,16 | 52,6 | -130,5 | 0,814 3 | | n-Butylmercaptan (NBM)
(1-butanethiol) | C₄H₃SH | 90,19 | 98,5 | -115,7 | 0,841 6 | | secButylmercaptan (SBM) (2-butanethiol) | CH₃CH(SH)C₂H₅ | 90,19 | 85 | -165 | 0,829 5 | | iso-Butylmercaptan (IBM)
(2-methylpropane-1-thiol) | (CH ₃) ₂ CHCH ₂ SH | 90,19 | 88,5 | < -70 | 0,835 7 | | tertButylmercaptan (TBM)
(2-methylpropane-2-thiol) | (CH₃)₃CSH | 90,19 | 64,3 | -0,5 | 0,794 3 ^b | Values taken from the Handbook of Chemistry and Physics, 87th ed., CRC Press, Boca Raton, Florida, USA. Main odorants used for LPG: EM # SAFETY APPROACH → Odorants are mainly used for flammable gases/liquids SAFETY APPROACH Alert at 20% of LEL ### Which odorant concentration? - → Intensity curves are established for each odorant blend (by trained people) according to a referenced method. - → Definition of a concentration allowing non trained people to smell and to identify the odor with a simple sniff (Sales scale level 2) # US REGULATORY REQUIREMENT: IN POPULATED AREAS - → Natural Gas Pipeline Safety Act issued 1968: - → Enabled DOT- PHMSA to establish 49 CFR Part 192 in 1970, including the odorization requirements for distribution and transmission networks in §192.625 - → American Gas Association (AGA) Odorization Manual: describes the pipeline classification → Odorization being only required in Distribution and Transmission class 3 & 4 pipelines # ODORIZATION EFFICIENCY: CASE STUDY FOR FRANCE → Efficient odorization program enables about 28 000 calls* for gas leakages per anum, enabling quick repairs and preventing as many gas accumulation situations. - ~ 38 000 km (23 000 miles) high pressure natural gas <u>transmission pipelines</u> - > 200 000 km (124 000 miles) natural gas distribution network - > 150 000 miles all odorized using the same technology: TetraHydroThiophene Odorization Technology Transferrability Presentation Title # ODORIZATION TECHNOLOGY TRANSFER: CASE STUDIES # METHODOLOGY: EXEMPLE OF STEEL GASES #### RISK BASED EVALUATION Definition of highest tolerated exposure considering gas composition and associated risks. - Toxicity risk of CO achieved before flammability and asphyxiation risks (few hundreds ppm CO) - → ALERT dosage determined to warn people <u>before toxic exposure (STEL 300 ppm)</u> Looking for traces → need for high intensity odorant #### TECHNOLOGY PROPOSAL ACCORDING TO SCENARIO (evaluation of fading potential) → Evaluation of Gas purity: presence of deleterious impurities, condensates, water, dusts. Presence of dusts and water saturated → Evaluation of potential technical barriers: compatibility of end use with sulfur traces No influence on steel surface, limited SOx emissions → Evaluation of process conditions: pressure, temperature, flowrate, pipe network material section and lenght Short carbon steel networks at low pressure and high flowrates at ambiant temperature ARKENA Onshore transport CO2 odorization # METHODOLOGY: EXEMPLE OF STEEL GASES #### ARKEMA TECHNOLOGY PROPOSAL: Proprietary mercaptan / sulfide formulation with properties enabling low reactivity, high intensity, easy regasification after adsorption on surface or into condensates: **CODETECT®** #### DETERMINATION OF ODOR INTENSITY CURVE # #### **PILOTING** Field evaluation: piloting in steel industry on BFG (20-30% CO) to assess odorization efficiency #### **IMPLEMENTATION** Field implementation in China to improve safety around LDG networks (65-80% CO) **ARKEMA** # EVOLUTION OF CO₂ TRANSPORTATION NETWORK - → Existing CO₂ onshore transport for Enhanced Oil Recovery (EOR), but mainly in <u>remote areas</u> (eg Canada Quest) / over <u>short distances</u> - → With CCS more CO₂ will have to be transported onshore through long distances in populated regions CO2 PIPELINE MILEAGE AND REGULATIONS ### CO₂ leakage risk in populated areas → Toxicity by Oxygen displacement STEL = 30 000 ppm Considering a Safety factor → 20 to 50% STEL \rightarrow We could aim 6 000 - 15 000 ppm CO₂ #### Transport conditions: - → Gas phase - → Dense phase (supercritical or liquid) Supercritical: pressure and temperature <u>above critical point</u> → Transport phase determined by optimization of transport costs (pressure drop) #### PHASE DIAGRAM OF CARBON DIOXIDE (CO.) Max throughput: Dense phase: Pressure >74 bar (1071 psi) # ODORIZATION TECHNOLOGY TRANSFER FOR CO₂ TRANSPORT Pipeline conditions (Material, P, T) are acceptable with respect to odorant and current equipment used for injection in HP Transmission networks. - Odorant currently injected in up to 90 bars (1300psi) pipelines in France. And up to 250 bars (3600psi) for CNG stations. - Odorant should be **fully injectable down to -45°C** (-50°F) (NA Winter season) They display much lower freezing point and ppm level water content resulting in extremely low "cloud point" (temperature at which free water traces separate and crystallize) - Compatibility of the S-based odorant with usual pipeline material is already proven (no corrosion issue). refer to: ISO 13734 requirements Odorants were already recommended to be considered in case of populated areas in 2008 (establishment of this report) $\underline{http://pdf.wri.org/ccs_guidelines.pdf}$ Satartia accident lessons: Sulfur-based impurities in CO₂ stream can effectively odorize Targeting specific odorant would bring benefits: Standardized practice (Stability & Efficiency of odorant) Improved Safety for population # R&D TO MEET CCS DEVELOPMENT NEEDS FOR IMPROVED SAFETY <u>Technical feasibility</u> evaluated under various conditions with pure CO₂ <u>Lab evaluation performed</u> <u>Arkema odorant R&D - Lacq - France</u> Gaseous CO₂ odorization (*Pure*), liquefaction, and leak simulation from: - Gas - Liquid - Supercritical state #### Impact of CO₂ impurity profile on technology selection Intensity / odor character / stability Example of some European projects spec *Purity from > 91 % to > 96 %* Some impurities tracked down to ppm, other to % levels. Several families of chemicals: - Hydrocarbons - Oxygenates (ROH; RC(O)H; RC(O)OH) - Amines - S-derivatives Evaluations to perform at R&D level or through Piloting. | CO ₂ specifications from different projects & operators | | | | | | | | | | | |---|-------------------|---------------------------|------------|--|----------------------------|-------------------------|--|--|--|--| | | | | ARAMIS 3 | | National Grid ⁴ | | | | | | | | Northern Lights 1 | PORTHOS ² | Shipping | Pipelines | Dense Phase | Gas Phase | | | | | | CO ₂ | Balance | ≥ 95% mol | Balance | ≥ 95% mol | ≥ 96% mol | ≥ 91% mol | | | | | | H ₂ O | ≤ 30 ppm | ≤ 70 ppm | ≤ 30 ppm | ≤ 70 ppm | ≤ 50 ppm _v | ≤ 50 ppm _v | | | | | | O ₂ | ≤ 10 ppm | ≤ 40 ppm | ≤ 10 ppm | ≤ 40 ppm | ≤ 10 ppm _v | ≤ 10 ppm _v | | | | | | NO _x | ≤ 10 ppm | ≤ 5 ppm | ≤ 1.5 ppm | ≤ 2.5 ppm | ≤ 100 ppm _v | ≤ 100 ppmv | | | | | | SO _x | ≤ 10 ppm | | ≤ 10 ppm | | ≤ 100 ppm _v | ≤ 100 ppm _v | | | | | | H ₂ S | ≤ 9 ppm | ≤ 20 ppm | ≤5 ppm | ≤ 20 ppm | ≤ 20 ppm _v | ≤ 80 ppm _v | | | | | | cos | - | (sum) (of which | - | (sum) (of which
H ₂ S ≤ 5 ppm) | - | - | | | | | | (CH ₃) ₂ S | - | H ₂ S ≤ 5 ppm) | - | | - | - | | | | | | Dimethyl sulfide | - | | - | | - | - | | | | | | H ₂ | ≤ 50 ppm | ≤ 0.75% mol | ≤ 500 ppm | ≤ 0.75% mol | ≤ 2% mol | ≤ 2% mol | | | | | | N ₂ | ‡ | ≤ 2.4% mol | - | ≤ 2.4% mol | • | - | | | | | | Ar | # | ≤ 0.4% | - | ≤ 0.4% mol | • | - | | | | | | CH ₄ | ‡ | ≤ 1% | - | ≤ 1% | • | | | | | | | co | ≤ 100 ppm | ≤ 750 ppm | 0.12% mol | ≤ 750 ppm | ≤ 2000 ppm _v | ≤ 2000 ppm _v | | | | | | O ₂ +N ₂ +H ₂ +Ar+CH ₄
+CO | | ≤ 4% | < 2000 ppm | < 40000 ppm | - | - | | | | | | Amine | ≤ 10 ppm | ≤ 1 ppm | ≤ 10 ppm | ≤1 ppm | t | t | | | | | | NH ₃ | ≤ 10 ppm | ≤ 3 ppm | ≤ 10 ppm | ≤ 3 ppm | t | t | | | | | | HCN | - | ≤ 2 ppm | - | ≤ 2 ppm | t | t | | | | | | Formaldehyde | ≤ 20 ppm | - | ≤ 20 ppm | - | - | - | | | | | | Acetaldehyde | ≤ 20 ppm | - | ≤ 20 ppm | - | - | - | | | | | | Total aldehydes | - | ≤ 10 ppm | - | ≤ 10 ppm | | | | | | | | C2+
hydrocarbons | - | ≤ 0.12% mol | - | ≤ 0.12% mol | - | - | | | | | | Aromatics | - | ≤ 0.1 ppm | - | ≤ 0.1 ppm | - | - | | | | | | C ₂ H ₄ | - | n/a | - | - | - | - | | | | | | Total VOC | - | ≤ 10 ppm | ≤ 10 ppm | ≤ 10 ppm | - | - | | | | | | Total glycol compounds | - | Follow dew point spec. | - | Follow dew point spec. | - | - | | | | | | Total carboxylic
acid and amide
compounds | - | ≤ 1 ppm | - | ≤1 ppm | - | - | | | | | | Tot P contained compounds | - | ≤1 ppm | - | ≤1 ppm | - | - | | | | | | Ethanol | - | ≤ 20 ppm | ≤ 20 ppm | ≤ 20 ppm | - | - | | | | | | Methanol | - | ≤ 620 ppm | ≤ 40 ppm | ≤ 620 ppm | - | - | | | | | | Mercury, Hg | ≤ 0.03 ppm | - | ≤ 0.03 ppm | - | + | t | | | | | # QUESTIONS ? PLEASE CONTACT US # REFERENCES # ODORIZATION STANDARDS AND REFERENCE MANUALS - AGA Odorization Manual - -ISO 13734 - -ISO 16922 #### ARKEMA GAS ODORANT #### PRODUCT & SERVICE OFFER #### LITERATURE: 2013 QUEST Project documentation: odorant injection study 2014 review on CO₂ transportation GHGT-12 CO₂ Pipeline infrastructure - lessons learnt 10.1016/j.egypro.2014.11.271 2015: Odourisation of CO₂ pipelines in the UK: Historical and current impacts of smell during gas transport 10.1016/j.ijggc.2015.04.010 2022: Failure Investigation Report – Denbury Gulf Coast Pipelines LLC CCS Guidelines(2008): http://pdf.wri.org/ccs_guidelines.pdf <u>Technical and Economic Characteristics of a CO₂ Transmission Pipeline</u> <u>Infrastructure (European commission-2011)</u> 2023: Pipeline Safety Trust CO₂ Pipeline Safety: summary for policy makers (May 2023)