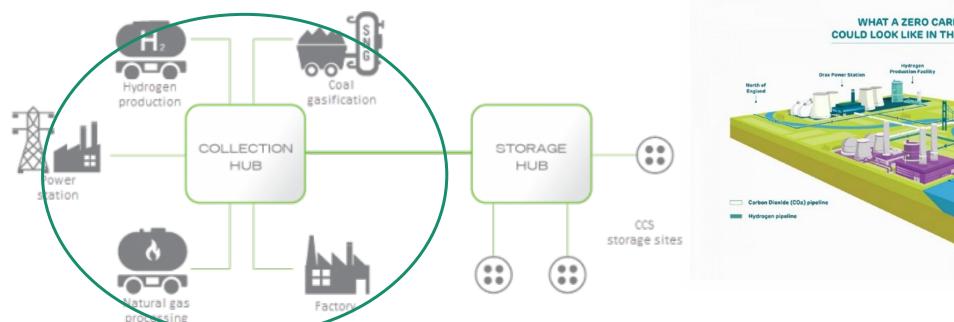

Odorization technology

For improved CO₂ onshore transport safety

Pipeline Safety Research and Development Forum 2023

Contact: <u>jean-benoit.cazaux@arkema.com</u>
Gas odorant Technical Manager

CARBON NEUTRALITY OBJECTIVES AND CARBON CAPTURE


→ IPCC scenario 1,5°: toward Carbon Neutrality

2020 → 2050

Emission CO_2 ~40 Gt/y \rightarrow ~6 Gt/y

Absorption $CO_2 \sim 0 \text{ Gt/y} \rightarrow \sim 6 \text{ Gt/y}$

Need for increase development of Carbon reduction initiatives such as CCUS

CARBON NEUTRALITY OBJECTIVES AND CARBON CAPTURE

PIPELINE OF COMMERCIAL CCS FACILITIES BY CAPTURE CAPACITY

Global CCS institute data

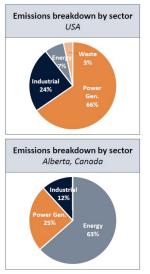
The capture capacity of facilities excludes:

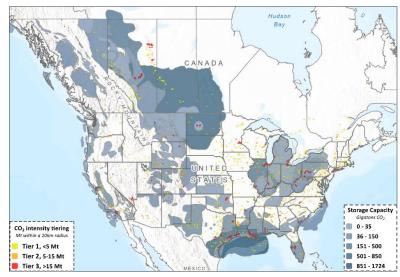
- Transport and storage-only facilities
- Suspended operations
- Announced facilities

Data through 1 April 2023

Only ~50 MTA of CCS capacity is operational today.

If all projects proceed, society will experience a 7x growth rate through 2030 but will be 3x short of the pathway needed to achieve IEA Net Zero Emissions 2050 Scenario.


We need to identify enablers for exponential acceleration.


EXONMobil 1. CCS Project data based on Wood MacKenzie., 1Q23 CCUS Market Tracker | 2. IEA World Energy Outlook 2022

CCUS DEVELOPMENT CONSEQUENCES

→ Developping infrastructure for Capture, Transport and Storage in wide variety of regions in NA to connect large emitters (Oil/ Energy / Agro / Ethanol/ Steel/ Cement) to storage locations

CCUS is potentially as important to the 10 years as shale and LNG have been to the last 10 years

Source: Rystad Energy CCUS Dashboard, May 2023

- \rightarrow CO₂ transportation will cease to remain limited to «remote locations» and «short distance» direct injection for EOR to be closer to population.
- → Increase of CO₂ transportation associated risks (corrosion, leakage, asphyxiation)

INCREASED RISKS OF ACCIDENTS SUCH AS THIS ONE

Feb 2020: GeoHazard → pipeline rupture, 350 m³ liquid CO₂ released (385 mt), vaporized and plume heading to Satartia town: 49 people injured (intoxication) and 250 people evacuated

Figure 2: Vehicle is Parked on HWY 433 - The White is Ice Generated by the Release of CO₂ - The Blue Arrow Points North (Aerial Drone Photograph Courtesy of the Mississippi Emergency Management Agency)

Figure 6: Topographical Map Showing the Delhi Pipeline (Green) and Denbury's Buffer Zone (Red) on Either Side of the Pipeline and the Proximity to Satartia (Blue Star Indicates the Rupture Site)

Odorized CO_2 due to presence of H_2S and other impurities (geological source of CO_2) \rightarrow enabled detection by public even though the cloud had moved away from pipeline

Odorization technology

INTRODUCTION TO ODORIZATION TECHNOLOGY AS APPLIED TO NATURAL GAS

- → Why odorization: to detect leakages for dangerous odorless gases/liquids to protect the population against leakage consequences
- → Odorant characteristics (cf ISO 13734):
 - Strong odor at low concentration
 - Distinctive « gassy » smell
 - Non toxic
 - Stable during storage and use with gas/liquid to be odorized

Main odorants used for natural gas:

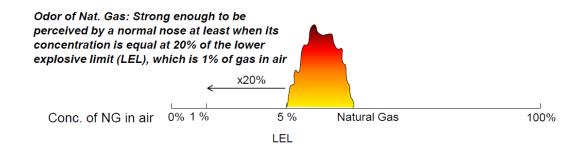
- Europe/China/Maghreb/Singapore: Pure THT
- Americas/Middle East/Australia: TBM based blends
- EM not used but may be naturally present in nat gas

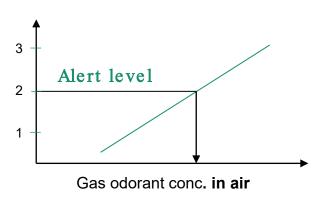
Table A.1 - List of chemical and physical properties of pure sulphur compounds

Sulfur compound	Formula	Molar mass g/mol	Boiling point °C	Freezing point °C	Density (at 20 °C) g/cm³
Sulfides (thioether)					
Dimethyl sulfide (DMS)	CH₃SCH₃	62,14	37,3	-98,3	0,848 3
Methyl ethyl sulfide (MES)	CH₃SC₂H₅	76,16	66,7	-105,9	0,842 2
Diethyl sulfide (DES)	(C ₂ H ₅) ₂ S	90,19	92,1	-103,9	0,836 2
Tetrahydrothiophene (THT)	C₄H ₈ S	88,17	121,0	-96,1	0,998 7
Mercaptans (thiols)					
Methylmercaptan (MM) ^a (methanethiol)	CH₃SH	48,11	5,9	-123	0,866 5
Ethylmercaptan (EM) ^a (ethanethiol)	C₂H₅SH	62,14	35,1	-147,8	0,831 5 ^b
n-Propylmercaptan (NPM) (1-propanethiol)	C₃H ₇ SH	76,16	67 to 68	-113,3	0,841 1
iso-Propylmercaptan (IPM) (2-propanethiol)	(CH ₃)₂CHSH	76,16	52,6	-130,5	0,814 3
n-Butylmercaptan (NBM) (1-butanethiol)	C₄H₃SH	90,19	98,5	-115,7	0,841 6
secButylmercaptan (SBM) (2-butanethiol)	CH₃CH(SH)C₂H₅	90,19	85	-165	0,829 5
iso-Butylmercaptan (IBM) (2-methylpropane-1-thiol)	(CH ₃) ₂ CHCH ₂ SH	90,19	88,5	< -70	0,835 7
tertButylmercaptan (TBM) (2-methylpropane-2-thiol)	(CH₃)₃CSH	90,19	64,3	-0,5	0,794 3 ^b

Values taken from the Handbook of Chemistry and Physics, 87th ed., CRC Press, Boca Raton, Florida, USA.

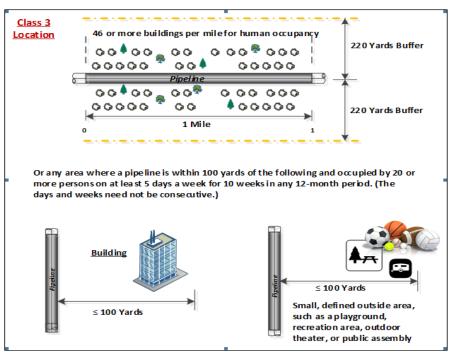
Main odorants used for LPG: EM

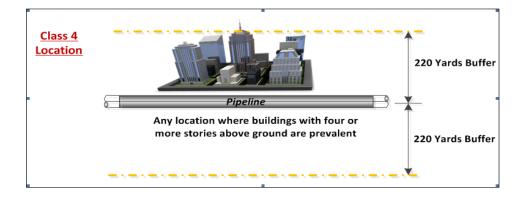

SAFETY APPROACH


→ Odorants are mainly used for flammable gases/liquids

SAFETY APPROACH
Alert at 20% of LEL

Which odorant concentration?


- → Intensity curves are established for each odorant blend (by trained people) according to a referenced method.
- → Definition of a concentration allowing non trained people to smell and to identify the odor with a simple sniff (Sales scale level 2)



US REGULATORY REQUIREMENT: IN POPULATED AREAS

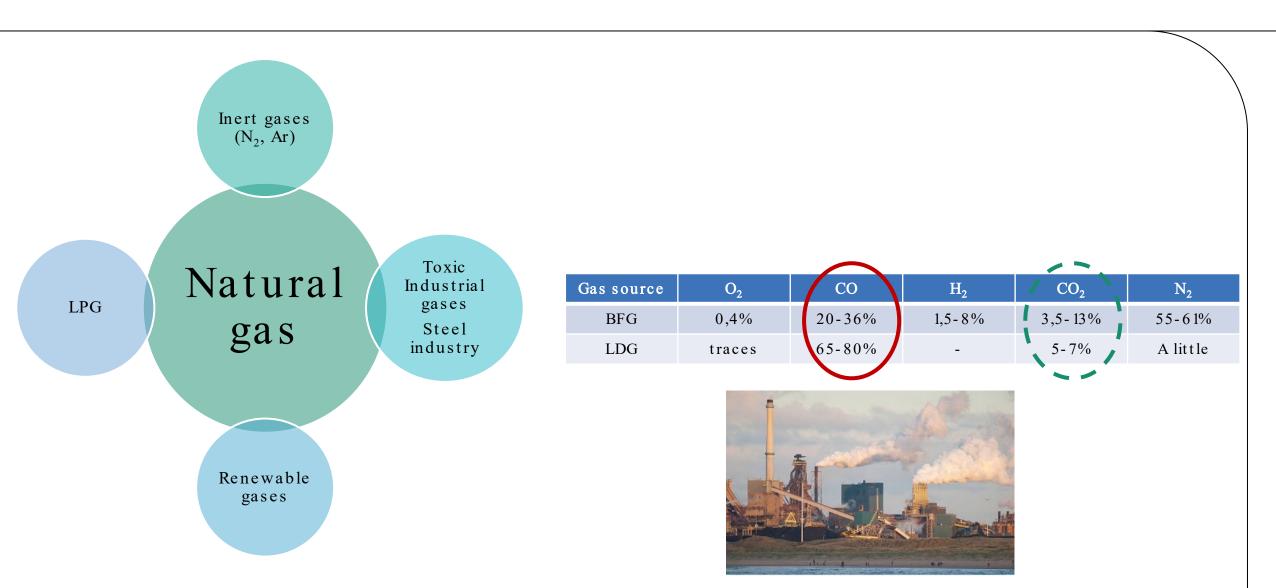
- → Natural Gas Pipeline Safety Act issued 1968:
- → Enabled DOT- PHMSA to establish 49 CFR Part 192 in 1970, including the odorization requirements for distribution and transmission networks in §192.625
- → American Gas Association (AGA) Odorization Manual: describes the pipeline classification

→ Odorization being only required in Distribution and Transmission class 3 & 4 pipelines

ODORIZATION EFFICIENCY: CASE STUDY FOR FRANCE

→ Efficient odorization program enables about 28 000 calls* for gas leakages per anum, enabling quick repairs and preventing as many gas accumulation situations.

- ~ 38 000 km (23 000 miles) high pressure natural gas <u>transmission pipelines</u>
- > 200 000 km (124 000 miles) natural gas distribution network
- > 150 000 miles all odorized using the same technology: TetraHydroThiophene



Odorization Technology Transferrability

Presentation Title

ODORIZATION TECHNOLOGY TRANSFER: CASE STUDIES

METHODOLOGY: EXEMPLE OF STEEL GASES

RISK BASED EVALUATION

Definition of highest tolerated exposure considering gas composition and associated risks.

- Toxicity risk of CO achieved before flammability and asphyxiation risks (few hundreds ppm CO)
- → ALERT dosage determined to warn people <u>before toxic exposure (STEL 300 ppm)</u>

Looking for traces → need for high intensity odorant

TECHNOLOGY PROPOSAL ACCORDING TO SCENARIO (evaluation of fading potential)

→ Evaluation of Gas purity: presence of deleterious impurities, condensates, water, dusts.

Presence of dusts and water saturated

→ Evaluation of potential technical barriers: compatibility of end use with sulfur traces

No influence on steel surface, limited SOx emissions

→ Evaluation of process conditions: pressure, temperature, flowrate, pipe network material section and lenght

Short carbon steel networks at low pressure and high flowrates at ambiant temperature

ARKENA Onshore transport CO2 odorization

METHODOLOGY: EXEMPLE OF STEEL GASES

ARKEMA TECHNOLOGY PROPOSAL:

Proprietary mercaptan / sulfide formulation with properties enabling low reactivity, high intensity, easy regasification after adsorption on surface or into condensates:

CODETECT®

DETERMINATION OF ODOR INTENSITY CURVE

PILOTING

Field evaluation: piloting in steel industry on BFG (20-30% CO) to assess odorization efficiency

IMPLEMENTATION

Field implementation in China to improve safety around LDG networks (65-80% CO)

ARKEMA

EVOLUTION OF CO₂ TRANSPORTATION NETWORK

- → Existing CO₂ onshore transport for Enhanced Oil Recovery (EOR), but mainly in <u>remote areas</u> (eg Canada Quest) / over <u>short distances</u>
- → With CCS more CO₂ will have to be transported onshore through long distances in populated regions

CO2 PIPELINE MILEAGE AND REGULATIONS

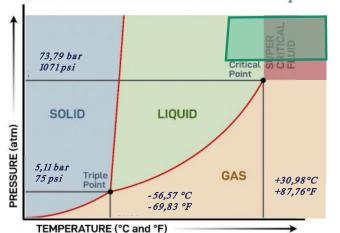
CO₂ leakage risk in populated areas

→ Toxicity by Oxygen displacement

STEL = 30 000 ppm

Considering a Safety factor → 20 to 50% STEL

 \rightarrow We could aim 6 000 - 15 000 ppm CO₂


Transport conditions:

- → Gas phase
- → Dense phase (supercritical or liquid)

Supercritical: pressure and temperature <u>above critical point</u>

→ Transport phase determined by optimization of transport costs (pressure drop)

PHASE DIAGRAM OF CARBON DIOXIDE (CO.)

Max throughput:

Dense phase:

Pressure >74 bar (1071 psi)

ODORIZATION TECHNOLOGY TRANSFER FOR CO₂ TRANSPORT

Pipeline conditions (Material, P, T) are acceptable with respect to odorant and current equipment used for injection in HP Transmission networks.

- Odorant currently injected in up to 90 bars (1300psi) pipelines in France. And up to 250 bars (3600psi) for CNG stations.
- Odorant should be **fully injectable down to -45°C** (-50°F) (NA Winter season)

They display much lower freezing point and ppm level water content resulting in extremely low "cloud point" (temperature at which free water traces separate and crystallize)

- Compatibility of the S-based odorant with usual pipeline material is already proven (no corrosion issue).

refer to: ISO 13734 requirements

Odorants were already recommended to be considered in case of populated areas in 2008

(establishment of this report)

 $\underline{http://pdf.wri.org/ccs_guidelines.pdf}$

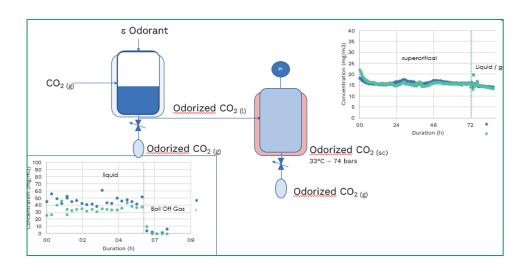
Satartia accident lessons:

Sulfur-based impurities in CO₂ stream can effectively odorize

Targeting specific odorant would bring benefits:

Standardized practice (Stability & Efficiency of odorant)

Improved Safety for population


R&D TO MEET CCS DEVELOPMENT NEEDS FOR IMPROVED SAFETY

<u>Technical feasibility</u> evaluated under various conditions with pure CO₂

<u>Lab evaluation performed</u> <u>Arkema odorant R&D - Lacq - France</u>

Gaseous CO₂ odorization (*Pure*), liquefaction, and leak simulation from:

- Gas
- Liquid
- Supercritical state

Impact of CO₂ impurity profile on technology selection

Intensity / odor character / stability

Example of some European projects spec

Purity from > 91 % to > 96 %

Some impurities tracked down to ppm, other to % levels.

Several families of chemicals:

- Hydrocarbons
- Oxygenates (ROH; RC(O)H; RC(O)OH)
- Amines
- S-derivatives

Evaluations to perform at R&D level or through Piloting.

CO ₂ specifications from different projects & operators										
			ARAMIS 3		National Grid ⁴					
	Northern Lights 1	PORTHOS ²	Shipping	Pipelines	Dense Phase	Gas Phase				
CO ₂	Balance	≥ 95% mol	Balance	≥ 95% mol	≥ 96% mol	≥ 91% mol				
H ₂ O	≤ 30 ppm	≤ 70 ppm	≤ 30 ppm	≤ 70 ppm	≤ 50 ppm _v	≤ 50 ppm _v				
O ₂	≤ 10 ppm	≤ 40 ppm	≤ 10 ppm	≤ 40 ppm	≤ 10 ppm _v	≤ 10 ppm _v				
NO _x	≤ 10 ppm	≤ 5 ppm	≤ 1.5 ppm	≤ 2.5 ppm	≤ 100 ppm _v	≤ 100 ppmv				
SO _x	≤ 10 ppm		≤ 10 ppm		≤ 100 ppm _v	≤ 100 ppm _v				
H ₂ S	≤ 9 ppm	≤ 20 ppm	≤5 ppm	≤ 20 ppm	≤ 20 ppm _v	≤ 80 ppm _v				
cos	-	(sum) (of which	-	(sum) (of which H ₂ S ≤ 5 ppm)	-	-				
(CH ₃) ₂ S	-	H ₂ S ≤ 5 ppm)	-		-	-				
Dimethyl sulfide	-		-		-	-				
H ₂	≤ 50 ppm	≤ 0.75% mol	≤ 500 ppm	≤ 0.75% mol	≤ 2% mol	≤ 2% mol				
N ₂	‡	≤ 2.4% mol	-	≤ 2.4% mol	•	-				
Ar	#	≤ 0.4%	-	≤ 0.4% mol	•	-				
CH ₄	‡	≤ 1%	-	≤ 1%	•					
co	≤ 100 ppm	≤ 750 ppm	0.12% mol	≤ 750 ppm	≤ 2000 ppm _v	≤ 2000 ppm _v				
O ₂ +N ₂ +H ₂ +Ar+CH ₄ +CO		≤ 4%	< 2000 ppm	< 40000 ppm	-	-				
Amine	≤ 10 ppm	≤ 1 ppm	≤ 10 ppm	≤1 ppm	t	t				
NH ₃	≤ 10 ppm	≤ 3 ppm	≤ 10 ppm	≤ 3 ppm	t	t				
HCN	-	≤ 2 ppm	-	≤ 2 ppm	t	t				
Formaldehyde	≤ 20 ppm	-	≤ 20 ppm	-	-	-				
Acetaldehyde	≤ 20 ppm	-	≤ 20 ppm	-	-	-				
Total aldehydes	-	≤ 10 ppm	-	≤ 10 ppm						
C2+ hydrocarbons	-	≤ 0.12% mol	-	≤ 0.12% mol	-	-				
Aromatics	-	≤ 0.1 ppm	-	≤ 0.1 ppm	-	-				
C ₂ H ₄	-	n/a	-	-	-	-				
Total VOC	-	≤ 10 ppm	≤ 10 ppm	≤ 10 ppm	-	-				
Total glycol compounds	-	Follow dew point spec.	-	Follow dew point spec.	-	-				
Total carboxylic acid and amide compounds	-	≤ 1 ppm	-	≤1 ppm	-	-				
Tot P contained compounds	-	≤1 ppm	-	≤1 ppm	-	-				
Ethanol	-	≤ 20 ppm	≤ 20 ppm	≤ 20 ppm	-	-				
Methanol	-	≤ 620 ppm	≤ 40 ppm	≤ 620 ppm	-	-				
Mercury, Hg	≤ 0.03 ppm	-	≤ 0.03 ppm	-	+	t				

QUESTIONS ? PLEASE CONTACT US

REFERENCES

ODORIZATION STANDARDS AND REFERENCE MANUALS

- AGA Odorization Manual
- -ISO 13734
- -ISO 16922

ARKEMA GAS ODORANT

PRODUCT & SERVICE OFFER

LITERATURE:

2013 QUEST Project documentation: odorant injection study

2014 review on CO₂ transportation
GHGT-12
CO₂ Pipeline infrastructure - lessons learnt
10.1016/j.egypro.2014.11.271

2015: Odourisation of CO₂ pipelines in the UK: Historical and current impacts of smell during gas transport 10.1016/j.ijggc.2015.04.010

2022: Failure Investigation Report – Denbury Gulf Coast Pipelines LLC

CCS Guidelines(2008):
http://pdf.wri.org/ccs_guidelines.pdf

<u>Technical and Economic Characteristics of a CO₂ Transmission Pipeline</u>
<u>Infrastructure (European commission-2011)</u>

2023: Pipeline Safety Trust CO₂ Pipeline Safety: summary for policy makers (May 2023)