

Determination of Potential Impact Radius for CO₂ Pipelines using Machine Learning Approach

Sam Wang, PhD, PE, CSP

Associate Professor and George Armistead '23 Faculty Fellow Texas A&M University, College Station

October 31, 2023

Agenda

- Background
- Project Outline
- Project Progress
- Summary and Discussion
- Q&A

1. Background

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING

Carbon Capture, Utilization and Storage

<u>2035 Goal</u>: reduce greenhouse gas emissions and aim for net zero by 2035.

Carbon Capture: achieve 14% of the global greenhouse gas emission reductions needed by 2050.

<u>CO₂ Transport</u>: ~50 CO₂ pipelines currently operating in the US.

1. Background

- Satartia, Mississippi Incident (2020)
 - \circ A 24-inch pipeline carrying liquefied CO₂ ruptured.
 - The pipeline was built through **hilly, rugged terrain**. Saturated with rain, soil around the pipeline slid, causing a pipe weld to break and releasing CO_2 .
 - A plume of CO₂ rolled toward the village of 50 people. Emergency personnel evacuated about 200 residents, and 45 people sought medical attention.
- PHMSA Announces New Safety Measures to Protect Americans From CO₂ Pipeline Failures, seeking solutions to advance the safe operation of CO₂ pipelines.
- PHMSA's regulations in 49 CFR 192.903 identify **PIR for <u>natural gas pipelines</u>**.
- To develop a rapid, universally applicable tool to assess the consequences of accidental CO₂ dispersion from high-pressure pipelines and determine the PIR for <u>CO₂ pipelines</u>.

2. Project Outline

5

PIR: CO₂ Critical Concentrations

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

Although CO_2 is **neither toxic nor flammable**, its asphyxiant nature with the **catastrophic release** from a pipeline rupture could pose a significant threat to the people in the vicinity.

- LC_{Lo}(5 mins): 90,000 ppm
- Adjusted 0.5-hr LC (CF): 49,500 ppm
- IDLH: 40,000 ppm
 - LC_{Lo}: The lowest concentration of a material in air reported to have caused the death.
 - Adjusted 0.5-hr LC: The adjusted concentration to 30 minutes exposure.
 - IDLH: A condition that poses a threat of exposure to airborne contaminants when that exposure is likely to cause death or immediate or delayed permanent adverse health effects or prevent escape from such an environment (based on a 30-minute exposure duration)

Lu, H. et al., Carbon Dioxide Transport via Pipelines: A Systematic Review. J. Clean. Prod. 2020, 266, 121994.

3. Project Progress - CFD

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

ANSYS Fluent

-		С	
1	3	Huid Flow (Fluent)	7=1
2	9	Geometry	? 🖌
З	6	Mesh	? 🖌
4	1	Setup	? .
5	(ii)	Solution	? .
6	۲	Results	7
		rluid rlau (rluad)	

Fluid Flow (Fluent)

CFD Model Validation

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

Table 4

Predicted versus observed flow rates and UDM source-term data (BP tests).

CO2PIPETRANS BP Test 8

	Test1	Test 2	Test3	Test 5	Test6	Test 11	Test 8	Test 8R	Test 9
Discharge rate									
DISC initial discharge rate (kg/s)	8.84	10.98	9.988	50.75	3.21	7.03	4.19	3.90	6.86
DISC/TVDI discharge rate (kg/s) (averaged over first 20 s for tests 8.8R,9)	8.84	10.98	9.988	50.75	3.21	7.03	4.01	3.73	6.25
Observed discharge rate (kg/s) (averaged over first 20 s for tests 8.8R,9)	_	11.41	9.972	41.17	3.50	7.12	4.07	3.80	6.05
Deviation predicted from observed	7.8%	-3.9%	0.16%	+23%	-8.2%	-1.1%	-1.5%	-1.8%	+3.4%
Final (post-expansion) state (UDM input)									
Discharge rate (kg/s) (from experiments)	8.2	11.41	9.988	41.17	3.50	7.12	4.07	3.80	6.05
Temperature (K) (DISC output)	194.6	194.1	194.26	194.4	193.8	194.1	198.2	204.8	194.1
Solid fraction (–) (DISC output)	0.397	0.403	0.384	0.399	0.397	0.330	0	0	0.154
Velocity (m/s) (DISC output)	156.7	189.8	179.2	191.7	191.3	154.2	466.5	472.8	289.0

Table 1

Experimental conditions for BP CO₂ tests.

Input	Test1	Test2	Test3	Test5	Test6	Test11	Test8	Test8R	Test9	Input for models
Discharge data										
Steady-state/transient	Steady	Steady	Steady	Steady	Steady	Steady	Trans.	Trans.	Trans.	_
Storage phase	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Vapour	Vapour	Vapour	DISC,TVDI
Storage pressure (barg)	103.4	155.5	133.5	157.68	156.7	82.03	157.76	148.7	154.16	DISC,TVDI
Storage temperature (°C)	5	7.84	11.02	9.12	9.48	17.44	147.12	149.37	69.17	DISC,TVDI
Vessel volume (m ³)	_	_	_	_	_	_	6.3	6.3	6.3	TVDI
Orifice diameter (mm)	11.94	11.94	11.94	25.62	6.46	11.94	11.94	11.94	11.94	DISC,TVDI
Orifice length (mm)	46.78	46.78	46.78	72.41	47.79	46.78	46.78	46.78	46.78	_
Release duration (s)	60	59	60	40	120	58	120	132	179	_
Ambient data										
Ambient temperature (°C)	14.2	7.5	10.6	5.8	6.1	11.6	11.19	11.1	8.2	DISC,TVDI,UDM
Ambient pressure (mbara)	999.4	958.2	972.5	985.4	938.4	960.2	957.99	957.1	958.9	DISC,TVDI,UDM
Relative humidity (%)	74.4	96	95.8	96.7	1	94	100	100	99.9	DISC,TVDI,UDM
Wind direction (degrees)	322.4	265.6	288.8	278.6	299	270.8	269.3	270	270.7	UDM uses 270°
Wind speed (m/s)	4	3.44	3.37	5.13	2.20	5.99	4.71	0.76	4.04	UDM

CFD Model Validation

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

Distance (m)	Experiment	Simulation
5	8.22%	8.80%
10	3.36%	4.55%
20	1.85%	2.64%
40	1.49%	1.24%

Related Factors for <u>CFD Inputs</u>:

- Applicable **terrain types** for the CO₂ pipelines (CADMAPPER)
- Corresponding design of CO₂ pipeline: pipeline characteristics, temperature, pressure, diameters, flow rate (Operating data)
- Weather (Wind speed and air temperature)

Expected <u>CFD Outputs</u>:

- CO₂ concentrations at distances from the pipeline with different conditions
- PIR

Terrains

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

With the help from AutoCAD Architecture, the realistic terrain could be established to conduct the further CFD simulations.

U.S. Regions with Large-scale CO ₂ Pipeline Systems in Operation	Miles of Pipeline
Permian Basin (W. TX, NM, and S. CO)	2,600
Gulf Coast (MS, LA, and E. TX)	740
Rocky Mountains (N. CO, WY, and MT)	730
Mid-Continent (OK and KS)	480
Other (ND, MI, Canada)	215

Terrains

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

Raton, New Mexico

Calistoga, California

Vernal, Utah

Walsenburg, Colorado

CO₂ Pipeline Characteristics

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

Maximum and minimum pressure range of different categories of CO₂ pipeline.

Design parameter	High	Medium	Low
Maximum pressure (MPa)	15.1–20.0	9.8–14.5	2.1-4.0
Minimum pressure (MPa)	7.2–15.1	3.1–3.5	0.3-1.0

- Pressure: 1-20 Mpa
- Diameter: 4-30 inch
- Flow rate: 50-1300 MMcfd

National Energy Technology Institute. (2015). A Review of the CO_2 Pipeline Infrastructure in the U.S.

	EXHIBIT # L	erman basin CO2	uansportati	on pipenn		
Scale	Pipeline	Operator	Location	Length (mi)	Diameter (in)	Estimated Flow Capacity (MMcfd)
	Cortez	Kinder Morgan	ТХ	502	30	1,300
	Sheep Mfn	Oxy Permian	ТХ	408	24	590
arga Ceala	Bravo	Oxy Permian	NM, TX	218	20	380
Trunk-lines	Canyon Reef Carriers	Kinder Morgan	ТХ	170	16	220
	Centerline	Kinder Morgan	ТХ	113	16	220
	Central Basin	Kinder Morgan	ТХ	143	16	220
	Este I - to Welch, Tx	ExxonMobil, et al	ТХ	40	14	180
	Este II - to Salt Crk Field	Oxy Permian	ТХ	45	12	130
	Means	ExxonMobil	ТХ	35	12	130
	North Ward Estes	Whiting	ТХ	26	12	130
	Slaughter	Oxy Permian	ТХ	35	12	130
	Mabee Lateral	Chevron	ТХ	18	10	110
	Val Verde	Oxy Permian	ТХ	83	10	110
	Rosebud	Hess	NM	50*	12	100*
maller	Anton Irish	Oxy Permian	ТХ	40	8	80
Scale	Dollarhide	Chevron	ТХ	23	8	80
Distribution	Llano	Trinity CO2	NM	53	12	80
garania	North Cowden	Oxy Permian	ТХ	8	8	80
	Pecos County	Kinder Morgan	ТХ	26	8	80
	Pikes Peak	Oxy Permian	ТХ	40	8	80
	W. Texas	Trinity CO2	TX, NM	60	12	80
	Comanche Creek	Oxy Permian	ТХ	120	6	70
	Cordona Lake	XTO	ТХ	7	6	70
	El Mar	Kinder Morgan	ТХ	35	6	70
	Wellman	Trinity CO2	ТХ	25	6	70
	Adair	Apache	ТХ	15	4	50
	Ford	Kinder Morgan	ТХ	12	4	50

3. Project Progress - Case Studies

	Variable	High	Medium	Low
	Pressure (MPa)	20	10	1
Pipeline characteristics	Diameter (inch)	30	16	4
	Flow rate (MMcfd)	1300	600	30
	Wind speed (mph)	25	15	1
Weather conditions	Temperature (°F)	100	50	0

CFD Model for Case Studies

Terrain: Monticello, Mississippi

С	1%	4%	9%
Case 1	210 m	10 m	6 m
Case 2	1810 m	450 m	155 m

Variable	Case 1	Case 2
Pressure (MPa)	20	20
Diameter (inch)	4	30
Flow rate (MMcfd)	30	1300
Wind speed (mph)	1	1
Temperature (°F)	60	60

- Current machine learning tool should account for
 - Local geography: Terrain type
 - Pipeline characteristics: Diameter, flow rate, and operating pressure
 - Weather: Wind speed and local ambient temperature
- The PIR will differentiate between areas with minor (1%), medium (4%), and severe (9%) health consequences from <u>full pipeline ruptures</u>.
- A CO₂ pipelines **dispersion database**.
- A user-friendly web app or mobile app will be developed.

4. Summary and Discussion

- Discussion
 - Any recommendations about weather conditions
 - Ground surface or roughness
 - CO₂ operating temperature
 - Technology to be integrated into this project
- Terminology: Potential Impact Radius (PIR) vs Potential Impact Distance (PID)
- Future Work
 - Machine learning model validation
 - Expect functions for software available for publics

Thank You! Questions & Discussion